This commit is contained in:
Kwaroran
2024-12-26 06:00:24 +09:00
9 changed files with 450 additions and 160 deletions

View File

@@ -465,6 +465,7 @@
}}>
<PencilIcon size={20}/>
</button>
<!-- 이 버튼이 수정 버튼. edit() 함수를 주목할 것-->
<button class="ml-2 hover:text-blue-500 transition-colors button-icon-remove" onclick={(e) => rm(e, false)} use:longpress={(e) => rm(e, true)}>
<TrashIcon size={20}/>
</button>

View File

@@ -287,20 +287,14 @@
</div>
{#if generationInfoMenuIndex === 0}
<div class="flex flex-col gap-2 w-full">
{#each DBState.db.characters[$selectedCharID].chats[DBState.db.characters[$selectedCharID].chatPage].hypaV2Data.chunks as chunk}
{#each DBState.db.characters[$selectedCharID].chats[DBState.db.characters[$selectedCharID].chatPage].hypaV2Data.chunks as chunk, i}
<TextAreaInput bind:value={chunk.text} />
{/each}
<Button onclick={() => {
DBState.db.characters[$selectedCharID].chats[DBState.db.characters[$selectedCharID].chatPage].hypaV2Data.chunks.push({
text: '',
targetId: 'all'
})
DBState.db.characters[$selectedCharID].chats[DBState.db.characters[$selectedCharID].chatPage].hypaV2Data.chunks = DBState.db.characters[$selectedCharID].chats[DBState.db.characters[$selectedCharID].chatPage].hypaV2Data.chunks
}}>+</Button>
<!-- Adding non-bound chunk is not okay, change the user flow to edit existing ones. -->
</div>
{:else}
{#each DBState.db.characters[$selectedCharID].chats[DBState.db.characters[$selectedCharID].chatPage].hypaV2Data.chunks as chunk, i}
{#each DBState.db.characters[$selectedCharID].chats[DBState.db.characters[$selectedCharID].chatPage].hypaV2Data.mainChunks as chunk, i} <!-- Summarized should be mainChunks, afaik. Be aware of that chunks are created with mainChunks, however this editing would not change related chunks. -->
<div class="flex flex-col p-2 rounded-md border-darkborderc border">
{#if i === 0}
<span class="text-green-500">Active</span>

View File

@@ -245,6 +245,8 @@ export async function loadV2Plugin(plugins:RisuPlugin[]){
const setChar = globalThis.__pluginApis__.setChar
const addProvider = globalThis.__pluginApis__.addProvider
const addRisuEventHandler = globalThis.__pluginApis__.addRisuEventHandler
const addRisuReplacer = globalThis.__pluginApis__.addRisuReplacer
const removeRisuReplacer = globalThis.__pluginApis__.removeRisuReplacer
const onUnload = globalThis.__pluginApis__.onUnload
${data}

View File

@@ -803,9 +803,9 @@ export async function sendChat(chatProcessIndex = -1,arg:{
chats = hn.chats
currentTokens = hn.tokens
}
else if(DBState.db.hypav2){ //HypaV2 support needs to be changed like this.
else if(DBState.db.hypav2){
console.log("Current chat's hypaV2 Data: ", currentChat.hypaV2Data)
const sp = await hypaMemoryV2(chats, currentTokens, maxContextTokens, currentChat, nowChatroom, tokenizer)
console.log("All chats: ", chats)
if(sp.error){
console.log(sp)
alertError(sp.error)
@@ -815,7 +815,9 @@ export async function sendChat(chatProcessIndex = -1,arg:{
currentTokens = sp.currentTokens
currentChat.hypaV2Data = sp.memory ?? currentChat.hypaV2Data
DBState.db.characters[selectedChar].chats[selectedChat].hypaV2Data = currentChat.hypaV2Data
console.log(currentChat.hypaV2Data)
currentChat = DBState.db.characters[selectedChar].chats[selectedChat];
console.log("[Expected to be updated] chat's HypaV2Data: ", currentChat.hypaV2Data)
}
else{
const sp = await supaMemory(chats, currentTokens, maxContextTokens, currentChat, nowChatroom, tokenizer, {

View File

@@ -172,8 +172,7 @@ export class HypaProcesser{
}
async similaritySearchScored(query: string) {
const results = await this.similaritySearchVectorWithScore((await this.getEmbeds(query))[0],);
return results
return await this.similaritySearchVectorWithScore((await this.getEmbeds(query))[0],);
}
private async similaritySearchVectorWithScore(

View File

@@ -1,4 +1,9 @@
import { getDatabase, type Chat, type character, type groupChat } from "src/ts/storage/database.svelte";
import {
getDatabase,
type Chat,
type character,
type groupChat,
} from "src/ts/storage/database.svelte";
import type { OpenAIChat } from "../index.svelte";
import type { ChatTokenizer } from "src/ts/tokenizer";
import { requestChatData } from "../request";
@@ -8,62 +13,71 @@ import { runSummarizer } from "../transformers";
import { parseChatML } from "src/ts/parser.svelte";
export interface HypaV2Data {
chunks: {
lastMainChunkID: number; // can be removed, but exists to more readability of the code.
mainChunks: { // summary itself
id: number;
text: string;
targetId: string;
chatMemos: Set<string>; // UUIDs of summarized chats
lastChatMemo: string;
}[];
mainChunks: {
text: string;
targetId: string;
chunks: { // split mainChunks for retrieval or something. Although quite uncomfortable logic, so maybe I will delete it soon.
mainChunkID: number;
text:string;
}[];
}
async function summary(stringlizedChat: string): Promise<{ success: boolean; data: string }> {
async function summary(
stringlizedChat: string
): Promise<{ success: boolean; data: string }> {
const db = getDatabase();
console.log("Summarizing");
if (db.supaModelType === 'distilbart') {
if (db.supaModelType === "distilbart") {
try {
const sum = await runSummarizer(stringlizedChat);
return { success: true, data: sum };
} catch (error) {
return {
success: false,
data: "SupaMemory: Summarizer: " + `${error}`
data: "SupaMemory: Summarizer: " + `${error}`,
};
}
}
const supaPrompt = db.supaMemoryPrompt === '' ?
"[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output to reduce tokens for gpt3 and other sublanguage models]\n"
: db.supaMemoryPrompt;
let result = '';
const supaPrompt =
db.supaMemoryPrompt === ""
? "[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output.]\n"
: db.supaMemoryPrompt;
let result = "";
if (db.supaModelType !== 'subModel') {
const promptbody = stringlizedChat + '\n\n' + supaPrompt + "\n\nOutput:";
if (db.supaModelType !== "subModel") {
const promptbody = stringlizedChat + "\n\n" + supaPrompt + "\n\nOutput:";
const da = await globalFetch("https://api.openai.com/v1/completions", {
headers: {
"Content-Type": "application/json",
"Authorization": "Bearer " + db.supaMemoryKey
Authorization: "Bearer " + db.supaMemoryKey,
},
method: "POST",
body: {
"model": db.supaModelType === 'curie' ? "text-curie-001"
: db.supaModelType === 'instruct35' ? 'gpt-3.5-turbo-instruct'
: "text-davinci-003",
"prompt": promptbody,
"max_tokens": 600,
"temperature": 0
}
})
model:
db.supaModelType === "curie"
? "text-curie-001"
: db.supaModelType === "instruct35"
? "gpt-3.5-turbo-instruct"
: "text-davinci-003",
prompt: promptbody,
max_tokens: 600,
temperature: 0,
},
});
console.log("Using openAI instruct 3.5 for SupaMemory");
try {
if (!da.ok) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da)
data: "SupaMemory: HTTP: " + JSON.stringify(da),
};
}
@@ -72,7 +86,7 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
if (!result) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da)
data: "SupaMemory: HTTP: " + JSON.stringify(da),
};
}
@@ -80,17 +94,18 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
} catch (error) {
return {
success: false,
data: "SupaMemory: HTTP: " + error
data: "SupaMemory: HTTP: " + error,
};
}
} else {
let parsedPrompt = parseChatML(supaPrompt.replaceAll('{{slot}}', stringlizedChat))
let parsedPrompt = parseChatML(
supaPrompt.replaceAll("{{slot}}", stringlizedChat)
);
const promptbody: OpenAIChat[] = (parsedPrompt ?? [
{
role: "user",
content: stringlizedChat
content: stringlizedChat,
},
{
role: "system",
@@ -110,207 +125,473 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
if (da.type === 'fail' || da.type === 'streaming' || da.type === 'multiline') {
return {
success: false,
data: "SupaMemory: HTTP: " + da.result
data: "SupaMemory: HTTP: " + da.result,
};
}
result = da.result;
}
return { success: true, data: result };
} // No, I am not going to touch any http API calls.
// Helper function start
export interface OldHypaV2Data {
chunks: {
text: string;
targetId: string;
}[];
mainChunks: {
text: string;
targetId: string;
}[];
}
function isSubset<T>(subset: Set<T>, superset: Set<T>): boolean {
for (const item of subset) {
if (!superset.has(item)) {
return false;
}
}
return true;
}
function isOldHypaV2Data(obj:any): obj is OldHypaV2Data {
return (
typeof obj === 'object' &&
obj !== null &&
Array.isArray(obj.chunks) &&
Array.isArray(obj.mainChunks) &&
obj.chunks.every(chunk =>
typeof chunk === 'object' &&
chunk !== null &&
typeof chunk.text === 'string' &&
typeof chunk.targetId === 'string'
) &&
obj.mainChunks.every(mainChunk =>
typeof mainChunk === 'object' &&
mainChunk !== null &&
typeof mainChunk.text === 'string' &&
typeof mainChunk.targetId === 'string'
)
);
}
// Helper function end
function convertOldToNewHypaV2Data(oldData: OldHypaV2Data, chats: OpenAIChat[]): HypaV2Data {
const oldMainChunks = oldData.mainChunks.slice().reverse(); // Inversed order, old mainchunk is done by unshift instead of push
const oldChunks = oldData.chunks.slice();
const newData: HypaV2Data = {
lastMainChunkID: 0,
mainChunks: [],
chunks: [],
};
const mainChunkTargetIds = new Set<string>();
for (const mc of oldMainChunks) {
if (mc.targetId) {
mainChunkTargetIds.add(mc.targetId);
}
}
// map chat memo to index, efficiency issues
const chatMemoToIndex = new Map<string, number>();
for (const tid of mainChunkTargetIds) {
const idx = chats.findIndex(c => c.memo === tid);
if (idx !== -1) {
chatMemoToIndex.set(tid, idx);
} else {
chatMemoToIndex.set(tid, -1);
}
}
for (let i = 0; i < oldMainChunks.length; i++) {
const oldMainChunk = oldMainChunks[i];
const targetId = oldMainChunk.targetId;
const mainChunkText = oldMainChunk.text;
const previousMainChunk = i > 0 ? oldMainChunks[i - 1] : null;
const previousMainChunkTarget = previousMainChunk ? previousMainChunk.targetId : null;
let chatMemos = new Set<string>();
if (previousMainChunkTarget && targetId) {
const startIndex = chatMemoToIndex.get(previousMainChunkTarget) ?? -1;
const endIndex = chatMemoToIndex.get(targetId) ?? -1;
if (startIndex !== -1 && endIndex !== -1) {
const lowerIndex = Math.min(startIndex, endIndex);
const upperIndex = Math.max(startIndex, endIndex);
for (let j = lowerIndex; j <= upperIndex; j++) {
chatMemos.add(chats[j].memo);
}
} else {
// Can't identify the chats correctly, so discard this main chunk at all
continue; // Technically, if this is the case Previous HypaV2Data is bugged. Discussion opened for changing it to break;
}
} else {
// No previous chunk, so we gather all chats from index 0 up to the targetId's index
if (targetId) {
const targetIndex = chatMemoToIndex.get(targetId) ?? -1;
if (targetIndex !== -1) {
// Include all memos from 0 up to targetIndex
for (let j = 0; j <= targetIndex; j++) {
chatMemos.add(chats[j].memo);
}
} else {
continue; // Invalid MainChunk.
}
}
}
const newMainChunk = {
id: newData.lastMainChunkID,
text: mainChunkText,
chatMemos: chatMemos,
lastChatMemo: targetId,
}
newData.mainChunks.push(newMainChunk);
newData.lastMainChunkID++;
// Adding chunks accordingly, matching MainChunkID by leveraging same targetId
const matchingOldChunks = oldChunks.filter((oldChunk) => oldChunk.targetId === targetId);
for (const oldChunk of matchingOldChunks) {
newData.chunks.push({
mainChunkID: newMainChunk.id,
text: oldChunk.text,
});
}
}
return newData; // updated HypaV2Data
}
function cleanInvalidChunks(
chats: OpenAIChat[],
data: HypaV2Data,
): void {
const currentChatMemos = new Set(chats.map((chat) => chat.memo));
// mainChunks filtering
data.mainChunks = data.mainChunks.filter((mainChunk) => {
return isSubset(mainChunk.chatMemos, currentChatMemos);
});
// chunk filtering based on mainChunk's id
const validMainChunkIds = new Set(data.mainChunks.map((mainChunk) => mainChunk.id));
data.chunks = data.chunks.filter((chunk) =>
validMainChunkIds.has(chunk.mainChunkID)
);
// Update lastMainChunkID
if (data.mainChunks.length > 0) {
data.lastMainChunkID = data.mainChunks[data.mainChunks.length - 1].id;
} else {
data.lastMainChunkID = 0;
}
}
export async function regenerateSummary(
chats: OpenAIChat[],
data: HypaV2Data,
mainChunkIndex: number
) : Promise<void> {
const targetMainChunk = data.mainChunks[mainChunkIndex];
}
export async function hypaMemoryV2(
chats: OpenAIChat[],
currentTokens: number,
maxContextTokens: number,
room: Chat,
char: character | groupChat,
tokenizer: ChatTokenizer,
arg: { asHyper?: boolean, summaryModel?: string, summaryPrompt?: string, hypaModel?: string } = {}
): Promise<{ currentTokens: number; chats: OpenAIChat[]; error?: string; memory?: HypaV2Data; }> {
tokenizer: ChatTokenizer
): Promise<{
currentTokens: number;
chats: OpenAIChat[];
error?: string;
memory?: HypaV2Data;
}> {
const db = getDatabase();
const data: HypaV2Data = room.hypaV2Data ?? { chunks: [], mainChunks: [] };
if(room.hypaV2Data && isOldHypaV2Data(room.hypaV2Data)){
console.log("Old HypaV2 data detected. Converting to new format...");
room.hypaV2Data = convertOldToNewHypaV2Data(room.hypaV2Data, chats);
}
const data: HypaV2Data = room.hypaV2Data ?? {
lastMainChunkID: 0,
chunks: [],
mainChunks: []
};
// Clean invalid HypaV2 data
cleanInvalidChunks(chats, data);
let allocatedTokens = db.hypaAllocatedTokens;
let chunkSize = db.hypaChunkSize;
currentTokens += allocatedTokens + 50;
currentTokens += allocatedTokens + chats.length * 4; // ChatML token counting from official openai documentation
let mainPrompt = "";
const lastTwoChats = chats.slice(-2);
// Error handling for infinite summarization attempts
let summarizationFailures = 0;
const maxSummarizationFailures = 3;
let lastMainChunkTargetId = '';
// Ensure correct targetId matching
const getValidChatIndex = (targetId: string) => {
return chats.findIndex(chat => chat.memo === targetId);
};
// Processing mainChunks
// Find the index to start summarizing from
let idx = 2; // first two should not be considered
if (data.mainChunks.length > 0) {
const chunk = data.mainChunks[0];
const ind = getValidChatIndex(chunk.targetId);
if (ind !== -1) {
const removedChats = chats.splice(0, ind + 1);
console.log("removed chats", removedChats);
for (const chat of removedChats) {
currentTokens -= await tokenizer.tokenizeChat(chat);
}
mainPrompt = chunk.text;
const mpToken = await tokenizer.tokenizeChat({ role: 'system', content: mainPrompt });
allocatedTokens -= mpToken;
const lastMainChunk = data.mainChunks[data.mainChunks.length - 1];
const lastChatMemo = lastMainChunk.lastChatMemo;
const lastChatIndex = chats.findIndex(chat => chat.memo === lastChatMemo);
if (lastChatIndex !== -1) {
idx = lastChatIndex + 1;
}
}
// Starting chat index of new mainChunk to be generated
// Token management loop
// Token management loop (If current token usage exceeds allowed amount)
while (currentTokens >= maxContextTokens) {
let idx = 0;
let targetId = '';
const halfData: OpenAIChat[] = [];
let halfDataTokens = 0;
while (halfDataTokens < chunkSize && (idx <= chats.length - 4)) { // Ensure latest two chats are not added to summarization.
const startIdx = idx;
console.log(
"Starting summarization iteration:",
"\nCurrent Tokens (before):", currentTokens,
"\nMax Context Tokens:", maxContextTokens,
"\nStartIdx:", startIdx,
"\nchunkSize:", chunkSize
);
// Accumulate chats to summarize
while (
halfDataTokens < chunkSize &&
idx < chats.length - 2 // keep the last two chats from summarizing(else, the roles will be fucked up)
) {
const chat = chats[idx];
halfDataTokens += await tokenizer.tokenizeChat(chat);
const chatTokens = await tokenizer.tokenizeChat(chat);
console.log(
"Evaluating chat for summarization:",
"\nIndex:", idx,
"\nRole:", chat.role,
"\nContent:", chat.content,
"\nchatTokens:", chatTokens,
"\nhalfDataTokens so far:", halfDataTokens,
"\nWould adding this exceed chunkSize?", (halfDataTokens + chatTokens > chunkSize)
);
// Check if adding this chat would exceed our chunkSize limit
if (halfDataTokens + chatTokens > chunkSize) {
// Can't add this chat without going over chunkSize
// Break out, and summarize what we have so far.
break;
}
// Add this chat to the halfData batch
halfData.push(chat);
halfDataTokens += chatTokens;
idx++;
targetId = chat.memo;
console.log("current target chat: ", chat);
}
// Avoid summarizing the last two chats
if (halfData.length < 3) break;
const endIdx = idx - 1;
console.log(
"Summarization batch chosen with this:",
"\nStartIdx:", startIdx,
"\nEndIdx:", endIdx,
"\nNumber of chats in halfData:", halfData.length,
"\nTotal tokens in halfData:", halfDataTokens,
"\nChats selected:", halfData.map(h => ({role: h.role, content: h.content}))
);
const stringlizedChat = halfData.map(e => `${e.role}: ${e.content}`).join('\n');
// If no chats were added, break to avoid infinite loop
if (halfData.length === 0) {
console.log("No chats to summarize in this iteration, breaking out.");
break;
}
const stringlizedChat = halfData
.map((e) => `${e.role}: ${e.content}`)
.join("\n");
// Summarize the accumulated chunk
const summaryData = await summary(stringlizedChat);
if (!summaryData.success) {
console.log("Summarization failed:", summaryData.data);
summarizationFailures++;
if (summarizationFailures >= maxSummarizationFailures) {
console.error("Summarization failed multiple times. Aborting...");
return {
currentTokens: currentTokens,
chats: chats,
error: "Summarization failed multiple times. Aborting to prevent infinite loop."
error: "Summarization failed multiple times. Aborting to prevent infinite loop.",
};
}
// If summarization fails, try again in next iteration
continue;
}
summarizationFailures = 0; // Reset failure counter on success
summarizationFailures = 0; // Reset on success
const summaryDataToken = await tokenizer.tokenizeChat({ role: 'system', content: summaryData.data });
mainPrompt += `\n\n${summaryData.data}`;
currentTokens -= halfDataTokens;
allocatedTokens -= summaryDataToken;
data.mainChunks.unshift({
text: summaryData.data,
targetId: targetId
const summaryDataToken = await tokenizer.tokenizeChat({
role: "system",
content: summaryData.data,
});
// Split the summary into chunks based on double line breaks
const splitted = summaryData.data.split('\n\n').map(e => e.trim()).filter(e => e.length > 0);
console.log(
"Summarization success:",
"\nSummary Data:", summaryData.data,
"\nSummary Token Count:", summaryDataToken
);
// Update chunks with the new summary
data.chunks.push(...splitted.map(e => ({
text: e,
targetId: targetId
})));
// **Token accounting fix:**
// Previous commits, the code likely have missed removing summarized chat's tokens.
// and never actually accounted for adding the summary tokens.
// Now we:
// 1. Remove old chats' tokens (they are replaced by summary)
// 2. Add summary tokens instead
currentTokens -= halfDataTokens; // remove original chats' tokens
currentTokens += summaryDataToken; // add the summary's tokens
// Remove summarized chats
chats.splice(0, idx);
console.log(
"After token adjustment:",
"\nRemoved halfDataTokens:", halfDataTokens,
"\nAdded summaryDataToken:", summaryDataToken,
"\nCurrent Tokens (after):", currentTokens
);
// Update lastMainChunkID and create a new mainChunk
data.lastMainChunkID++;
const newMainChunkId = data.lastMainChunkID;
const chatMemos = new Set(halfData.map((chat) => chat.memo));
const lastChatMemo = halfData[halfData.length - 1].memo;
data.mainChunks.push({
id: newMainChunkId,
text: summaryData.data,
chatMemos: chatMemos,
lastChatMemo: lastChatMemo,
});
// Split the summary into chunks
const splitted = summaryData.data
.split("\n\n")
.map((e) => e.trim())
.filter((e) => e.length > 0);
data.chunks.push(
...splitted.map((e) => ({
mainChunkID: newMainChunkId,
text: e,
}))
);
console.log(
"Chunks added:",
splitted,
"\nUpdated mainChunks count:", data.mainChunks.length,
"\nUpdated chunks count:", data.chunks.length
);
}
// Construct the mainPrompt from mainChunks until half of the allocatedTokens are used
// Construct the mainPrompt from mainChunks
mainPrompt = "";
let mainPromptTokens = 0;
for (const chunk of data.mainChunks) {
const chunkTokens = await tokenizer.tokenizeChat({ role: 'system', content: chunk.text });
const chunkTokens = await tokenizer.tokenizeChat({
role: "system",
content: chunk.text,
});
if (mainPromptTokens + chunkTokens > allocatedTokens / 2) break;
mainPrompt += `\n\n${chunk.text}`;
mainPromptTokens += chunkTokens;
lastMainChunkTargetId = chunk.targetId;
}
// Fetch additional memory from chunks
const searchDocumentPrefix = "search_document: ";
const processor = new HypaProcesser(db.hypaModel);
processor.oaikey = db.supaMemoryKey;
// Find the smallest index of chunks with the same targetId as lastMainChunkTargetId
const lastMainChunkIndex = data.chunks.reduce((minIndex, chunk, index) => {
if (chunk.targetId === lastMainChunkTargetId) {
return Math.min(minIndex, index);
}
return minIndex;
}, data.chunks.length);
const searchDocumentPrefix = "search_document: ";
const prefixLength = searchDocumentPrefix.length;
// Filter chunks to only include those older than the last mainChunk's targetId
const olderChunks = lastMainChunkIndex !== data.chunks.length
? data.chunks.slice(0, lastMainChunkIndex)
: data.chunks;
console.log("Older Chunks:", olderChunks);
// Add older chunks to processor for similarity search
await processor.addText(olderChunks.filter(v => v.text.trim().length > 0).map(v => searchDocumentPrefix + v.text.trim()));
// Add chunks to processor for similarity search
await processor.addText(
data.chunks
.filter((v) => v.text.trim().length > 0)
.map((v) => searchDocumentPrefix + v.text.trim()) // sometimes this should not be used at all. RisuAI does not support embedding model that this is meaningful, isn't it?
);
let scoredResults: { [key: string]: number } = {};
for (let i = 0; i < 3; i++) {
for (let i = 0; i < 3; i++) { // Should parameterize this, fixed length 3 is a magic number without explanation
const pop = chats[chats.length - i - 1];
if (!pop) break;
const searched = await processor.similaritySearchScored(`search_query: ${pop.content}`);
const searched = await processor.similaritySearchScored(
`search_query: ${pop.content}`
);
for (const result of searched) {
const score = result[1] / (i + 1);
scoredResults[result[0]] = (scoredResults[result[0]] || 0) + score;
}
}
const scoredArray = Object.entries(scoredResults).sort((a, b) => b[1] - a[1]);
const scoredArray = Object.entries(scoredResults).sort(
(a, b) => b[1] - a[1]
);
let chunkResultPrompts = "";
let chunkResultTokens = 0;
while (allocatedTokens - mainPromptTokens - chunkResultTokens > 0 && scoredArray.length > 0) {
while (
allocatedTokens - mainPromptTokens - chunkResultTokens > 0 &&
scoredArray.length > 0
) {
const [text] = scoredArray.shift();
const tokenized = await tokenizer.tokenizeChat({ role: 'system', content: text.substring(searchDocumentPrefix.length) });
if (tokenized > allocatedTokens - mainPromptTokens - chunkResultTokens) break;
// Ensure strings are truncated correctly using searchDocumentPrefix.length
chunkResultPrompts += text.substring(searchDocumentPrefix.length) + '\n\n';
const content = text.substring(prefixLength);
const tokenized = await tokenizer.tokenizeChat({
role: "system",
content: content,
});
if (
tokenized >
allocatedTokens - mainPromptTokens - chunkResultTokens
)
break;
chunkResultPrompts += content + "\n\n";
chunkResultTokens += tokenized;
}
const fullResult = `<Past Events Summary>${mainPrompt}</Past Events Summary>\n<Past Events Details>${chunkResultPrompts}</Past Events Details>`;
chats.unshift({
// Filter out summarized chats
const unsummarizedChats = chats.slice(idx);
// Insert the memory system prompt at the beginning
unsummarizedChats.unshift({
role: "system",
content: fullResult,
memo: "supaMemory"
memo: "supaMemory",
});
// Add the remaining chats after the last mainChunk's targetId
const lastTargetId = data.mainChunks.length > 0 ? data.mainChunks[0].targetId : null;
if (lastTargetId) {
const lastIndex = getValidChatIndex(lastTargetId);
if (lastIndex !== -1) {
const remainingChats = chats.slice(lastIndex + 1);
chats = [chats[0], ...remainingChats];
}
}
// Add last two chats if they exist and are not duplicates
if (lastTwoChats.length === 2) {
const [lastChat1, lastChat2] = lastTwoChats;
if (!chats.some(chat => chat.memo === lastChat1.memo)) {
chats.push(lastChat1);
}
if (!chats.some(chat => chat.memo === lastChat2.memo)) {
chats.push(lastChat2);
for (const chat of lastTwoChats) {
if (!unsummarizedChats.find((c) => c.memo === chat.memo)) {
unsummarizedChats.push(chat);
}
}
console.log("model being used: ", db.hypaModel, db.supaModelType, "\nCurrent session tokens: ", currentTokens, "\nAll chats, including memory system prompt: ", chats, "\nMemory data, with all the chunks: ", data);
// Recalculate currentTokens
currentTokens = await tokenizer.tokenizeChats(unsummarizedChats);
console.log(
"Model being used: ",
db.hypaModel,
db.supaModelType,
"\nCurrent session tokens: ",
currentTokens,
"\nAll chats, including memory system prompt: ",
unsummarizedChats,
"\nMemory data, with all the chunks: ",
data
);
return {
currentTokens: currentTokens,
chats: chats,
memory: data
chats: unsummarizedChats,
memory: data,
};
}
}

View File

@@ -229,6 +229,9 @@ export function setDatabase(data:Database){
if(checkNullish(data.supaMemoryKey)){
data.supaMemoryKey = ""
}
if(checkNullish(data.hypaMemoryKey)){
data.hypaMemoryKey = ""
}
if(checkNullish(data.supaModelType)){
data.supaModelType = "none"
}
@@ -630,6 +633,7 @@ export interface Database{
useStreaming:boolean
palmAPI:string,
supaMemoryKey:string
hypaMemoryKey:string
supaModelType:string
textScreenColor?:string
textBorder?:boolean

View File

@@ -295,15 +295,15 @@ export async function tokenizeAccurate(data:string, consistantChar?:boolean) {
export class ChatTokenizer {
private chatAdditonalTokens:number
private chatAdditionalTokens:number
private useName:'name'|'noName'
constructor(chatAdditonalTokens:number, useName:'name'|'noName'){
this.chatAdditonalTokens = chatAdditonalTokens
constructor(chatAdditionalTokens:number, useName:'name'|'noName'){
this.chatAdditionalTokens = chatAdditionalTokens
this.useName = useName
}
async tokenizeChat(data:OpenAIChat) {
let encoded = (await encode(data.content)).length + this.chatAdditonalTokens
let encoded = (await encode(data.content)).length + this.chatAdditionalTokens
if(data.name && this.useName ==='name'){
encoded += (await encode(data.name)).length + 1
}
@@ -314,17 +314,24 @@ export class ChatTokenizer {
}
return encoded
}
async tokenizeChats(data:OpenAIChat[]){
let encoded = 0
for(const chat of data){
encoded += await this.tokenizeChat(chat)
}
return encoded
}
async tokenizeMultiModal(data:MultiModal){
const db = getDatabase()
if(!supportsInlayImage()){
return this.chatAdditonalTokens
return this.chatAdditionalTokens
}
if(db.gptVisionQuality === 'low'){
return 87
}
let encoded = this.chatAdditonalTokens
let encoded = this.chatAdditionalTokens
let height = data.height ?? 0
let width = data.width ?? 0