Merge branch 'dev' into autotranslateinput

This commit is contained in:
kwaroran
2023-06-08 08:34:08 +09:00
committed by GitHub
11 changed files with 463 additions and 26 deletions

View File

@@ -101,6 +101,10 @@
<span class="text-neutral-200">Palm2 {language.apiKey}</span>
<input class="text-neutral-200 mb-4 p-2 bg-transparent input-text focus:bg-selected text-sm" placeholder="..." bind:value={$DataBase.palmAPI}>
{/if}
{#if $DataBase.aiModel === 'novellist' || $DataBase.subModel === 'novellist'}
<span class="text-neutral-200">NovelList {language.apiKey}</span>
<input class="text-neutral-200 mb-4 p-2 bg-transparent input-text focus:bg-selected text-sm" placeholder="..." bind:value={$DataBase.novellistAPI}>
{/if}
{#if $DataBase.aiModel.startsWith('claude') || $DataBase.subModel.startsWith('claude')}
<span class="text-neutral-200">Claude {language.apiKey}</span>

View File

@@ -72,7 +72,7 @@ export async function requestChatDataMain(arg:requestDataArgument, model:'model'
: aiModel === 'gpt4' ? 'gpt-4' : 'gpt-4-32k',
messages: formated,
temperature: temperature,
max_tokens: arg.maxTokens ?? maxTokens,
max_tokens: maxTokens,
presence_penalty: arg.PresensePenalty ?? (db.PresensePenalty / 100),
frequency_penalty: arg.frequencyPenalty ?? (db.frequencyPenalty / 100),
logit_bias: bias,
@@ -460,6 +460,44 @@ export async function requestChatDataMain(arg:requestDataArgument, model:'model'
result: data.results[0].text
}
}
case "novellist":{
const auth_key = db.novellistAPI;
const api_server_url = 'https://api.tringpt.com/';
const headers = {
'Authorization': `Bearer ${auth_key}`,
'Content-Type': 'application/json'
};
const send_body = {
text: stringlizeChat(formated, currentChar?.name ?? ''),
length: maxTokens,
temperature: temperature,
top_p: 0.7,
tailfree: 1.0,
rep_pen: arg.frequencyPenalty ?? (db.frequencyPenalty / 100),
};
const response = await globalFetch(api_server_url + '/api', {
method: 'POST',
headers: headers,
body: send_body,
});
if(!response.ok){
return {
type: 'fail',
result: response.data
}
}
const result = response.data.data[0];
return {
'type': 'success',
'result': unstringlizeChat(result, formated, currentChar?.name ?? '')
}
}
default:{
if(aiModel.startsWith('claude')){
for(let i=0;i<formated.length;i++){

View File

@@ -78,7 +78,7 @@ export async function supaMemory(
async function summarize(stringlizedChat:string){
const supaPrompt = db.supaMemoryPrompt === '' ?
"[Summarize the ongoing role story, including as many events from the past as possible, using assistant as a narrative helper;do not analyze. include all of the characters' names, statuses, thoughts, relationships, and attire. Be sure to include dialogue exchanges and context by referencing previous statements and reactions. assistant's summary should provide an objective overview of the story while also considering relevant past conversations and events. It must also remove redundancy and unnecessary content from the prompt so that gpt3 and other sublanguage models]\n"
"[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output to reduce tokens for gpt3 and other sublanguage models]\n"
: db.supaMemoryPrompt
let result = ''

View File

@@ -8,7 +8,7 @@ import { defaultAutoSuggestPrompt, defaultJailbreak, defaultMainPrompt } from '.
export const DataBase = writable({} as any as Database)
export const loadedStore = writable(false)
export let appVer = '1.24.0'
export let appVer = '1.24.1'
export function setDatabase(data:Database){
if(checkNullish(data.characters)){
@@ -500,9 +500,10 @@ export interface Database{
koboldURL:string
advancedBotSettings:boolean
useAutoSuggestions:boolean
autoSuggestPrompt:string
claudeAPIKey:string
useChatCopy:boolean
autoSuggestPrompt:string,
claudeAPIKey:string,
useChatCopy:boolean,
novellistAPI:string,
useAutoTranslateInput:boolean
}

View File

@@ -416,17 +416,17 @@ export async function globalFetch(url:string, arg:{body?:any,headers?:{[key:stri
})
if(arg.rawResponse){
addFetchLog("Uint8Array Response", da.ok)
addFetchLog("Uint8Array Response", da.ok && da.status >= 200 && da.status < 300)
return {
ok: da.ok,
ok: da.ok && da.status >= 200 && da.status < 300,
data: new Uint8Array(await da.arrayBuffer())
}
}
else{
const dat = await da.json()
addFetchLog(dat, da.ok)
addFetchLog(dat, da.ok && da.status >= 200 && da.status < 300)
return {
ok: da.ok,
ok: da.ok && da.status >= 200 && da.status < 300,
data: dat
}
}
@@ -455,17 +455,17 @@ export async function globalFetch(url:string, arg:{body?:any,headers?:{[key:stri
})
if(arg.rawResponse){
addFetchLog("Uint8Array Response", da.ok)
addFetchLog("Uint8Array Response", da.ok && da.status >= 200 && da.status < 300)
return {
ok: da.ok,
ok: da.ok && da.status >= 200 && da.status < 300,
data: new Uint8Array(await da.arrayBuffer())
}
}
else{
const dat = await da.json()
addFetchLog(dat, da.ok)
addFetchLog(dat, da.ok && da.status >= 200 && da.status < 300)
return {
ok: da.ok,
ok: da.ok && da.status >= 200 && da.status < 300,
data: dat
}
}
@@ -567,9 +567,9 @@ export async function globalFetch(url:string, arg:{body?:any,headers?:{[key:stri
,signal: arg.abortSignal
})
addFetchLog("Uint8Array Response", da.ok)
addFetchLog("Uint8Array Response", da.ok && da.status >= 200 && da.status < 300)
return {
ok: da.ok,
ok: da.ok && da.status >= 200 && da.status < 300,
data: new Uint8Array(await da.arrayBuffer())
}
}
@@ -586,9 +586,9 @@ export async function globalFetch(url:string, arg:{body?:any,headers?:{[key:stri
})
const dat = await da.json()
addFetchLog(dat, da.ok)
addFetchLog(dat, da.ok && da.status >= 200 && da.status < 300)
return {
ok: da.ok,
ok: da.ok && da.status >= 200 && da.status < 300,
data: dat
}
}

View File

@@ -1,7 +1,13 @@
import type { Tiktoken } from "@dqbd/tiktoken";
import type { character } from "./storage/database";
import { DataBase, type character } from "./storage/database";
import { get } from "svelte/store";
import { tokenizeTransformers } from "./transformers/transformer";
async function encode(data:string):Promise<(number[]|Uint32Array)>{
let db = get(DataBase)
if(db.aiModel === 'novellist'){
return await tokenizeTransformers('naclbit/trin_tokenizer_v3',data)
}
return await tikJS(data)
}

View File

@@ -0,0 +1,24 @@
import type { PreTrainedTokenizer } from "@xenova/transformers"
type transformerLibType = typeof import("@xenova/transformers");
let tokenizer:PreTrainedTokenizer = null
let transformerLib:transformerLibType
let tokenizerType:string = ''
async function loadTransformers() {
if(!transformerLib){
transformerLib = await import('@xenova/transformers')
}
}
export async function tokenizeTransformers(type:string, text:string) {
await loadTransformers()
if(tokenizerType !== type){
const AutoTokenizer = transformerLib.AutoTokenizer
tokenizer = await AutoTokenizer.from_pretrained(type)
tokenizerType = type
}
return tokenizer.encode(text)
}