Risuai 0.6.3 first commit

This commit is contained in:
kwaroran
2023-05-07 12:41:45 +09:00
parent 50e5e1d917
commit 2c5c7d2694
98 changed files with 15070 additions and 0 deletions

474
src/ts/process/index.ts Normal file
View File

@@ -0,0 +1,474 @@
import { get, writable } from "svelte/store";
import { DataBase, setDatabase, type character } from "../database";
import { CharEmotion, selectedCharID } from "../stores";
import { tokenize, tokenizeNum } from "../tokenizer";
import { language } from "../../lang";
import { alertError } from "../alert";
import { loadLoreBookPrompt } from "../lorebook";
import { findCharacterbyId, replacePlaceholders } from "../util";
import { requestChatData } from "./request";
import { stableDiff } from "./stableDiff";
import { processScript } from "./scripts";
export interface OpenAIChat{
role: 'system'|'user'|'assistant'
content: string
}
export const doingChat = writable(false)
export async function sendChat(chatProcessIndex = -1):Promise<boolean> {
let findCharCache:{[key:string]:character} = {}
function findCharacterbyIdwithCache(id:string){
const d = findCharCache[id]
if(!!d){
return d
}
else{
const r = findCharacterbyId(id)
findCharCache[id] = r
return r
}
}
function reformatContent(data:string){
return data.trim().replace(`${currentChar.name}:`, '').trim()
}
let isDoing = get(doingChat)
if(isDoing){
if(chatProcessIndex === -1){
return false
}
}
doingChat.set(true)
let db = get(DataBase)
let selectedChar = get(selectedCharID)
const nowChatroom = db.characters[selectedChar]
let currentChar:character
if(nowChatroom.type === 'group'){
if(chatProcessIndex === -1){
for(let i=0;i<nowChatroom.characters.length;i++){
const r = await sendChat(i)
if(!r){
return false
}
}
return true
}
else{
currentChar = findCharacterbyIdwithCache(nowChatroom.characters[chatProcessIndex])
if(!currentChar){
alertError(`cannot find character: ${nowChatroom.characters[chatProcessIndex]}`)
return false
}
}
}
else{
currentChar = nowChatroom
}
let selectedChat = nowChatroom.chatPage
let currentChat = nowChatroom.chats[selectedChat]
let maxContextTokens = db.maxContext
if(db.aiModel === 'gpt35'){
if(maxContextTokens > 4000){
maxContextTokens = 4000
}
}
if(db.aiModel === 'gpt4'){
if(maxContextTokens > 8000){
maxContextTokens = 8000
}
}
let unformated = {
'main':([] as OpenAIChat[]),
'jailbreak':([] as OpenAIChat[]),
'chats':([] as OpenAIChat[]),
'lorebook':([] as OpenAIChat[]),
'globalNote':([] as OpenAIChat[]),
'authorNote':([] as OpenAIChat[]),
'lastChat':([] as OpenAIChat[]),
'description':([] as OpenAIChat[]),
}
if(!currentChar.utilityBot){
unformated.main.push({
role: 'system',
content: replacePlaceholders(db.mainPrompt + ((db.additionalPrompt === '' || (!db.promptPreprocess)) ? '' : `\n${db.additionalPrompt}`), currentChar.name)
})
if(db.jailbreakToggle){
unformated.jailbreak.push({
role: 'system',
content: replacePlaceholders(db.jailbreak, currentChar.name)
})
}
unformated.globalNote.push({
role: 'system',
content: replacePlaceholders(db.globalNote, currentChar.name)
})
}
unformated.authorNote.push({
role: 'system',
content: replacePlaceholders(currentChat.note, currentChar.name)
})
unformated.description.push({
role: 'system',
content: replacePlaceholders((db.promptPreprocess ? db.descriptionPrefix: '') + currentChar.desc, currentChar.name)
})
unformated.lorebook.push({
role: 'system',
content: replacePlaceholders(await loadLoreBookPrompt(), currentChar.name)
})
//await tokenize currernt
let currentTokens = (await tokenize(Object.keys(unformated).map((key) => {
return (unformated[key] as OpenAIChat[]).map((d) => {
return d.content
}).join('\n\n')
}).join('\n\n')) + db.maxResponse) + 150
let chats:OpenAIChat[] = []
if(nowChatroom.type === 'group'){
chats.push({
role: 'system',
content: '[Start a new group chat]'
})
}
else{
chats.push({
role: 'system',
content: '[Start a new chat]'
})
}
chats.push({
role: 'assistant',
content: processScript(currentChar,
replacePlaceholders(nowChatroom.firstMessage, currentChar.name),
'editprocess')
})
currentTokens += await tokenize(processScript(currentChar,
replacePlaceholders(nowChatroom.firstMessage, currentChar.name),
'editprocess'))
const ms = currentChat.message
for(const msg of ms){
let formedChat = processScript(currentChar,replacePlaceholders(msg.data, currentChar.name), 'editprocess')
if(nowChatroom.type === 'group'){
if(msg.saying && msg.role === 'char'){
formedChat = `${findCharacterbyIdwithCache(msg.saying).name}: ${formedChat}`
}
else if(msg.role === 'user'){
formedChat = `${db.username}: ${formedChat}`
}
}
chats.push({
role: msg.role === 'user' ? 'user' : 'assistant',
content: formedChat
})
currentTokens += (await tokenize(formedChat) + 1)
}
if(nowChatroom.type === 'group'){
const systemMsg = `[Write the next reply only as ${currentChar.name}]`
chats.push({
role: 'system',
content: systemMsg
})
currentTokens += (await tokenize(systemMsg) + 1)
}
console.log(currentTokens)
console.log(maxContextTokens)
while(currentTokens > maxContextTokens){
if(chats.length <= 1){
alertError(language.errors.toomuchtoken)
return false
}
currentTokens -= (await tokenize(chats[0].content) + 1)
chats.splice(0, 1)
}
console.log(currentTokens)
let bias:{[key:number]:number} = {}
for(let i=0;i<currentChar.bias.length;i++){
const bia = currentChar.bias[i]
const tokens = await tokenizeNum(bia[0])
for(const token of tokens){
bias[token] = bia[1]
}
}
for(let i=0;i<db.bias.length;i++){
const bia = db.bias[i]
const tokens = await tokenizeNum(bia[0])
for(const token of tokens){
bias[token] = bia[1]
}
}
unformated.lastChat.push(chats[chats.length - 1])
chats.splice(chats.length - 1, 1)
unformated.chats = chats
//make into one
let formated:OpenAIChat[] = []
const formatOrder = db.formatingOrder
let sysPrompts:string[] = []
for(let i=0;i<formatOrder.length;i++){
const cha = unformated[formatOrder[i]]
if(cha.length === 1 && cha[0].role === 'system'){
sysPrompts.push(cha[0].content)
}
else if(sysPrompts.length > 0){
const prompt = sysPrompts.join('\n')
if(prompt.replace(/\n/g,'').length > 3){
formated.push({
role: 'system',
content: prompt
})
}
sysPrompts = []
formated = formated.concat(cha)
}
else{
formated = formated.concat(cha)
}
}
if(sysPrompts.length > 0){
const prompt = sysPrompts.join('\n')
if(prompt.replace(/\n/g,'').length > 3){
formated.push({
role: 'system',
content: prompt
})
}
sysPrompts = []
}
const req = await requestChatData({
formated: formated,
bias: bias,
currentChar: currentChar
}, 'model')
let result = ''
if(req.type === 'fail'){
alertError(req.result)
return false
}
else{
result = reformatContent(req.result)
db.characters[selectedChar].chats[selectedChat].message.push({
role: 'char',
data: result,
saying: processScript(currentChar,currentChar.chaId, 'editoutput')
})
setDatabase(db)
}
if(currentChar.viewScreen === 'emotion'){
let currentEmotion = currentChar.emotionImages
function shuffleArray(array:string[]) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
return array
}
let emotionList = currentEmotion.map((a) => {
return a[0]
})
let charemotions = get(CharEmotion)
let tempEmotion = charemotions[currentChar.chaId]
if(!tempEmotion){
tempEmotion = []
}
if(tempEmotion.length > 4){
tempEmotion.splice(0, 1)
}
let emobias:{[key:number]:number} = {}
for(const emo of emotionList){
const tokens = await tokenizeNum(emo)
for(const token of tokens){
emobias[token] = 10
}
}
for(let i =0;i<tempEmotion.length;i++){
const emo = tempEmotion[i]
const tokens = await tokenizeNum(emo[0])
const modifier = 20 - ((tempEmotion.length - (i + 1)) * (20/4))
for(const token of tokens){
emobias[token] -= modifier
if(emobias[token] < -100){
emobias[token] = -100
}
}
}
// const promptbody:OpenAIChat[] = [
// {
// role:'system',
// content: `assistant is a emotion extractor. user will input a prompt of a character, and assistant must output the emotion of a character.\n\n must chosen from this list: ${shuffleArray(emotionList).join(', ')} \noutput only one word.`
// },
// {
// role: 'user',
// content: `"Good morning, Master! Is there anything I can do for you today?"`
// },
// {
// role: 'assistant',
// content: 'happy'
// },
// {
// role: 'user',
// content: result
// },
// ]
const promptbody:OpenAIChat[] = [
{
role:'system',
content: `${db.emotionPrompt2 || "From the list below, choose a word that best represents a character's outfit description, action, or emotion in their dialogue. Prioritize selecting words related to outfit first, then action, and lastly emotion. Print out the chosen word."}\n\n list: ${shuffleArray(emotionList).join(', ')} \noutput only one word.`
},
{
role: 'user',
content: `"Good morning, Master! Is there anything I can do for you today?"`
},
{
role: 'assistant',
content: 'happy'
},
{
role: 'user',
content: result
},
]
console.log('requesting chat')
const rq = await requestChatData({
formated: promptbody,
bias: emobias,
currentChar: currentChar,
temperature: 0.4,
maxTokens: 30,
}, 'submodel')
if(rq.type === 'fail'){
alertError(rq.result)
return true
}
else{
emotionList = currentEmotion.map((a) => {
return a[0]
})
try {
const emotion:string = rq.result.replace(/ |\n/g,'').trim().toLocaleLowerCase()
let emotionSelected = false
for(const emo of currentEmotion){
if(emo[0] === emotion){
const emos:[string, string,number] = [emo[0], emo[1], Date.now()]
tempEmotion.push(emos)
charemotions[currentChar.chaId] = tempEmotion
CharEmotion.set(charemotions)
emotionSelected = true
break
}
}
if(!emotionSelected){
for(const emo of currentEmotion){
if(emotion.includes(emo[0])){
const emos:[string, string,number] = [emo[0], emo[1], Date.now()]
tempEmotion.push(emos)
charemotions[currentChar.chaId] = tempEmotion
CharEmotion.set(charemotions)
emotionSelected = true
break
}
}
}
if(!emotionSelected && emotionList.includes('neutral')){
const emo = currentEmotion[emotionList.indexOf('neutral')]
const emos:[string, string,number] = [emo[0], emo[1], Date.now()]
tempEmotion.push(emos)
charemotions[currentChar.chaId] = tempEmotion
CharEmotion.set(charemotions)
emotionSelected = true
}
} catch (error) {
alertError(language.errors.httpError + `${error}`)
return true
}
}
return true
}
else if(currentChar.viewScreen === 'imggen'){
if(chatProcessIndex !== -1){
alertError("Stable diffusion in group chat is not supported")
}
const msgs = db.characters[selectedChar].chats[selectedChat].message
let msgStr = ''
for(let i = (msgs.length - 1);i>=0;i--){
console.log(i,msgs.length,msgs[i])
if(msgs[i].role === 'char'){
msgStr = `character: ${msgs[i].data.replace(/\n/, ' ')} \n` + msgStr
}
else{
msgStr = `user: ${msgs[i].data.replace(/\n/, ' ')} \n` + msgStr
break
}
}
const ch = await stableDiff(currentChar, msgStr)
if(ch){
db.characters[selectedChar].chats[selectedChat].sdData = ch
setDatabase(db)
}
}
return true
}

250
src/ts/process/plugins.ts Normal file
View File

@@ -0,0 +1,250 @@
import { get, writable } from "svelte/store";
import { language } from "../../lang";
import { alertError } from "../alert";
import { DataBase } from "../database";
import { checkNullish, selectSingleFile, sleep } from "../util";
import type { OpenAIChat } from ".";
import { globalFetch } from "../globalApi";
export const customProviderStore = writable([] as string[])
interface PluginRequest{
url: string
header?:{[key:string]:string}
body: any,
res: string
}
interface ProviderPlugin{
name:string
displayName?:string
script:string
arguments:{[key:string]:'int'|'string'|string[]}
realArg:{[key:string]:number|string}
}
export type RisuPlugin = ProviderPlugin
export async function importPlugin(){
try {
let db = get(DataBase)
const f = await selectSingleFile(['js'])
if(!f){
return
}
const jsFile = Buffer.from(f.data).toString('utf-8').replace(/^\uFEFF/gm, "");
const splitedJs = jsFile.split('\n')
let name = ''
let displayName:string = undefined
let arg:{[key:string]:'int'|'string'|string[]} = {}
let realArg:{[key:string]:number|string} = {}
for(const line of splitedJs){
if(line.startsWith('//@risu-name')){
const provied = line.slice(13)
if(provied === ''){
alertError('plugin name must be longer than "", did you put it correctly?')
return
}
name = provied.trim()
}
if(line.startsWith('//@risu-display-name')){
const provied = line.slice('//@risu-display-name'.length + 1)
if(provied === ''){
alertError('plugin display name must be longer than "", did you put it correctly?')
return
}
name = provied.trim()
}
if(line.startsWith('//@risu-arg')){
const provied = line.trim().split(' ')
if(provied.length < 3){
alertError('plugin argument is incorrect, did you put space in argument name?')
return
}
const provKey = provied[1]
if(provied[2] !== 'int' && provied[2] !== 'string'){
alertError(`plugin argument type is "${provied[2]}", which is an unknown type.`)
return
}
if(provied[2] === 'int'){
arg[provKey] = 'int'
realArg[provKey] = 0
}
else if(provied[2] === 'string'){
arg[provKey] = 'string'
realArg[provKey] = ''
}
}
}
if(name.length === 0){
alertError('plugin name not found, did you put it correctly?')
return
}
let pluginData:RisuPlugin = {
name: name,
script: jsFile,
realArg: realArg,
arguments: arg,
displayName: displayName
}
db.plugins.push(pluginData)
DataBase.set(db)
loadPlugins()
} catch (error) {
console.error(error)
alertError(language.errors.noData)
}
}
export function getCurrentPluginMax(prov:string){
return 12000
}
let pluginWorker:Worker = null
let providerRes:{success:boolean, content:string} = null
function postMsgPluginWorker(type:string, body:any){
const bod = {
type: type,
body: body
}
pluginWorker.postMessage(bod)
}
export async function loadPlugins() {
let db = get(DataBase)
if(pluginWorker){
pluginWorker.terminate()
pluginWorker = null
}
if(db.plugins.length > 0){
const da = await fetch("/pluginApi.js")
const pluginApiString = await da.text()
let pluginjs = `${pluginApiString}\n`
for(const plug of db.plugins){
pluginjs += `(() => {${plug.script}})()`
}
const blob = new Blob([pluginjs], {type: 'application/javascript'});
pluginWorker = new Worker(URL.createObjectURL(blob));
pluginWorker.addEventListener('message', async (msg) => {
const data:{type:string,body:any} = msg.data
switch(data.type){
case "addProvider":{
let provs = get(customProviderStore)
provs.push(data.body)
customProviderStore.set(provs)
console.log(provs)
break
}
case "resProvider":{
const provres:{success:boolean, content:string} = data.body
if(checkNullish(provres.success) || checkNullish(provres.content)){
providerRes = {
success: false,
content :"provider didn't respond 'success' or 'content' in response object"
}
}
else if(typeof(provres.content) !== 'string'){
providerRes = {
success: false,
content :"provider didn't respond 'content' in response object in string"
}
}
else{
providerRes = {
success: !!provres.success,
content: provres.content
}
}
break
}
case "fetch": {
postMsgPluginWorker('fetchData',{
id: data.body.id,
data: await globalFetch(data.body.url, data.body.arg)
})
break
}
case "getArg":{
try {
const db = get(DataBase)
const arg:string[] = data.body.arg.split('::')
for(const plug of db.plugins){
if(arg[0] === plug.name){
postMsgPluginWorker('fetchData',{
id: data.body.id,
data: plug.realArg[arg[1]]
})
return
}
}
postMsgPluginWorker('fetchData',{
id: data.body.id,
data: null
})
} catch (error) {
postMsgPluginWorker('fetchData',{
id: data.body.id,
data: null
})
}
break
}
case "log":{
console.log(data.body)
break
}
}
})
}
}
export async function pluginProcess(arg:{
prompt_chat: OpenAIChat,
temperature: number,
max_tokens: number,
presence_penalty: number
frequency_penalty: number
bias: {[key:string]:string}
}|{}){
try {
let db = get(DataBase)
if(!pluginWorker){
return {
success: false,
content: "plugin worker not found error"
}
}
postMsgPluginWorker("requestProvider", {
key: db.currentPluginProvider,
arg: arg
})
providerRes = null
while(true){
await sleep(50)
if(providerRes){
break
}
}
return {
success: providerRes.success,
content: providerRes.content
}
} catch (error) {
return {
success: false,
content: "unknownError"
}
}
}

215
src/ts/process/request.ts Normal file
View File

@@ -0,0 +1,215 @@
import { get } from "svelte/store";
import type { OpenAIChat } from ".";
import { DataBase, setDatabase, type character } from "../database";
import { pluginProcess } from "./plugins";
import { language } from "../../lang";
import { stringlizeChat } from "./stringlize";
import { globalFetch } from "../globalApi";
interface requestDataArgument{
formated: OpenAIChat[]
bias: {[key:number]:number}
currentChar: character
temperature?: number
maxTokens?:number
PresensePenalty?: number
frequencyPenalty?: number
}
type requestDataResponse = {
type: 'success'|'fail'
result: string
}
export async function requestChatData(arg:requestDataArgument, model:'model'|'submodel'):Promise<requestDataResponse> {
const db = get(DataBase)
let trys = 0
while(true){
const da = await requestChatDataMain(arg, model)
if(da.type === 'success'){
return da
}
trys += 1
if(trys > db.requestRetrys){
return da
}
}
}
export async function requestChatDataMain(arg:requestDataArgument, model:'model'|'submodel'):Promise<requestDataResponse> {
const db = get(DataBase)
let result = ''
let formated = arg.formated
let maxTokens = db.maxResponse
let bias = arg.bias
let currentChar = arg.currentChar
const replacer = model === 'model' ? db.forceReplaceUrl : db.forceReplaceUrl2
const aiModel = model === 'model' ? db.aiModel : db.subModel
switch(aiModel){
case 'gpt35':
case 'gpt4':{
const body = ({
model: aiModel === 'gpt35' ? 'gpt-3.5-turbo' : 'gpt-4',
messages: formated,
temperature: arg.temperature ?? (db.temperature / 100),
max_tokens: arg.maxTokens ?? maxTokens,
presence_penalty: arg.PresensePenalty ?? (db.PresensePenalty / 100),
frequency_penalty: arg.frequencyPenalty ?? (db.frequencyPenalty / 100),
logit_bias: bias,
})
let replacerURL = replacer === '' ? 'https://api.openai.com/v1/chat/completions' : replacer
if(replacerURL.endsWith('v1')){
replacerURL += '/chat/completions'
}
if(replacerURL.endsWith('v1/')){
replacerURL += 'chat/completions'
}
const res = await globalFetch(replacerURL, {
body: body,
headers: {
"Authorization": "Bearer " + db.openAIKey
},
})
const dat = res.data as any
if(res.ok){
try {
const msg:OpenAIChat = (dat.choices[0].message)
return {
type: 'success',
result: msg.content
}
} catch (error) {
return {
type: 'fail',
result: (language.errors.httpError + `${JSON.stringify(dat)}`)
}
}
}
else{
if(dat.error && dat.error.message){
return {
type: 'fail',
result: (language.errors.httpError + `${dat.error.message}`)
}
}
else{
return {
type: 'fail',
result: (language.errors.httpError + `${JSON.stringify(res.data)}`)
}
}
}
break
}
case "textgen_webui":{
let DURL = db.textgenWebUIURL
if((!DURL.endsWith('textgen')) && (!DURL.endsWith('textgen/'))){
if(DURL.endsWith('/')){
DURL += 'run/textgen'
}
else{
DURL += '/run/textgen'
}
}
const proompt = stringlizeChat(formated, currentChar.name)
const payload = [
proompt,
{
'max_new_tokens': 80,
'do_sample': true,
'temperature': (db.temperature / 100),
'top_p': 0.9,
'typical_p': 1,
'repetition_penalty': (db.PresensePenalty / 100),
'encoder_repetition_penalty': 1,
'top_k': 100,
'min_length': 0,
'no_repeat_ngram_size': 0,
'num_beams': 1,
'penalty_alpha': 0,
'length_penalty': 1,
'early_stopping': false,
'truncation_length': maxTokens,
'ban_eos_token': false,
'custom_stopping_strings': [`\nUser:`],
'seed': -1,
add_bos_token: true,
}
];
const bodyTemplate = { "data": [JSON.stringify(payload)] };
const res = await globalFetch(DURL, {
body: bodyTemplate,
headers: {}
})
const dat = res.data as any
console.log(DURL)
console.log(res.data)
if(res.ok){
try {
return {
type: 'success',
result: dat.data[0].substring(proompt.length)
}
} catch (error) {
return {
type: 'fail',
result: (language.errors.httpError + `${error}`)
}
}
}
else{
return {
type: 'fail',
result: (language.errors.httpError + `${JSON.stringify(res.data)}`)
}
}
}
case 'custom':{
const d = await pluginProcess({
bias: bias,
prompt_chat: formated,
temperature: (db.temperature / 100),
max_tokens: maxTokens,
presence_penalty: (db.PresensePenalty / 100),
frequency_penalty: (db.frequencyPenalty / 100)
})
if(!d){
return {
type: 'fail',
result: (language.errors.unknownModel)
}
}
else if(!d.success){
return {
type: 'fail',
result: d.content
}
}
else{
return {
type: 'success',
result: d.content
}
}
break
}
default:{
return {
type: 'fail',
result: (language.errors.unknownModel)
}
}
}
}

15
src/ts/process/scripts.ts Normal file
View File

@@ -0,0 +1,15 @@
import type { character } from "../database";
const dreg = /{{data}}/g
export function processScript(char:character, data:string, mode:'editinput'|'editoutput'|'editprocess'){
for (const script of char.customscript){
if(script.type === mode){
const reg = new RegExp(script.in,'g')
data = data.replace(reg, (v) => {
return script.out.replace(dreg, v)
})
}
}
return data
}

View File

@@ -0,0 +1,158 @@
import { get } from "svelte/store"
import { DataBase, type character } from "../database"
import { requestChatData } from "./request"
import { alertError } from "../alert"
import { globalFetch } from "../globalApi"
import { CharEmotion } from "../stores"
export async function stableDiff(currentChar:character,prompt:string){
const mainPrompt = "assistant is a chat analyzer.\nuser will input a data of situation with key and values before chat, and a chat of a user and character.\nView the status of the chat and change the data.\nif data's key starts with $, it must change it every time.\nif data value is none, it must change it."
let db = get(DataBase)
if(db.sdProvider === ''){
alertError("Stable diffusion is not set in settings.")
return false
}
let proompt = 'Data:'
let currentSd:[string,string][] = []
const sdData = currentChar.chats[currentChar.chatPage].sdData
if(sdData){
const das = sdData.split('\n')
for(const data of das){
const splited = data.split(':::')
currentSd.push([splited[0].trim(), splited[1].trim()])
}
}
else{
currentSd = JSON.parse(JSON.stringify(currentChar.sdData))
}
for(const d of currentSd){
let val = d[1].trim()
if(val === ''){
val = 'none'
}
if(!d[0].startsWith('|') || d[0] === 'negative' || d[0] === 'always'){
proompt += `\n${d[0].trim()}: ${val}`
}
}
proompt += `\n\nChat:\n${prompt}`
const promptbody:OpenAIChat[] = [
{
role:'system',
content: mainPrompt
},
{
role: 'user',
content: `Data:\ncharacter's appearance: red hair, cute, black eyes\ncurrent situation: none\n$character's pose: none\n$character's emotion: none\n\nChat:\nuser: *eats breakfeast* \n I'm ready.\ncharacter: Lemon waits patiently outside your room while you get ready. Once you are dressed and have finished your breakfast, she escorts you to the door.\n"Have a good day at school, Master. Don't forget to study hard and make the most of your time there," Lemon reminds you with a smile as she sees you off.`
},
{
role: 'assistant',
content: "character's appearance: red hair, cute, black eyes\ncurrent situation: waking up in the morning\n$character's pose: standing\n$character's emotion: apologetic"
},
{
role:'system',
content: mainPrompt
},
{
role: 'user',
content: proompt
},
]
console.log(proompt)
const rq = await requestChatData({
formated: promptbody,
currentChar: currentChar,
temperature: 0.2,
maxTokens: 300,
bias: {}
}, 'submodel')
if(rq.type === 'fail'){
alertError(rq.result)
return false
}
else{
const res = rq.result
const das = res.split('\n')
for(const data of das){
const splited = data.split(':')
if(splited.length === 2){
for(let i=0;i<currentSd.length;i++){
if(currentSd[i][0].trim() === splited[0]){
currentSd[i][1] = splited[1].trim()
}
}
}
}
}
let returnSdData = currentSd.map((val) => {
return val.join(':::')
}).join('\n')
if(db.sdProvider === 'webui'){
let prompts:string[] = []
let neg = ''
for(let i=0;i<currentSd.length;i++){
if(currentSd[i][0] !== 'negative'){
prompts.push(currentSd[i][1])
}
else{
neg = currentSd[i][1]
}
}
const uri = new URL(db.webUiUrl)
uri.pathname = '/sdapi/v1/txt2img'
try {
const da = await globalFetch(uri.toString(), {
body: {
"width": db.sdConfig.width,
"height": db.sdConfig.height,
"seed": -1,
"steps": db.sdSteps,
"cfg_scale": db.sdCFG,
"prompt": prompts.join(','),
"negative_prompt": neg,
'sampler_name': db.sdConfig.sampler_name
}
})
if(da.ok){
let charemotions = get(CharEmotion)
const img = `data:image/png;base64,${da.data.images[0]}`
console.log(img)
const emos:[string, string,number][] = [[img, img, Date.now()]]
charemotions[currentChar.chaId] = emos
CharEmotion.set(charemotions)
}
else{
alertError(JSON.stringify(da.data))
return false
}
return returnSdData
} catch (error) {
alertError(error)
return false
}
}
return ''
}

View File

@@ -0,0 +1,21 @@
import type { OpenAIChat } from ".";
export function multiChatReplacer(){
}
export function stringlizeChat(formated:OpenAIChat[], char:string = ''){
let resultString:string[] = []
for(const form of formated){
if(form.role === 'system'){
resultString.push("'System Note: " + form.content)
}
else if(form.role === 'user'){
resultString.push("User: " + form.content)
}
else if(form.role === 'assistant'){
resultString.push("Assistant: " + form.content)
}
}
return resultString.join('\n\n') + `\n\n${char}:`
}