Merge branch 'main' of https://github.com/kwaroran/RisuAI
This commit is contained in:
@@ -55,7 +55,8 @@ export async function loadLoreBookV3Prompt(){
|
||||
const recursiveScanning = char.loreSettings?.recursiveScanning ?? true
|
||||
let recursivePrompt:{
|
||||
prompt: string,
|
||||
source: string
|
||||
source: string,
|
||||
data: string
|
||||
}[] = []
|
||||
let matchLog:{
|
||||
prompt: string,
|
||||
@@ -75,23 +76,27 @@ export async function loadLoreBookV3Prompt(){
|
||||
let mList:{
|
||||
source:string
|
||||
prompt:string
|
||||
data:string
|
||||
}[] = sliced.map((msg, i) => {
|
||||
if(msg.role === 'user'){
|
||||
return {
|
||||
source: `message ${i} by user`,
|
||||
prompt: `\x01{{${DBState.db.username}}}:` + msg.data + '\x01'
|
||||
prompt: `\x01{{${DBState.db.username}}}:` + msg.data + '\x01',
|
||||
data: msg.data
|
||||
}
|
||||
}
|
||||
else{
|
||||
return {
|
||||
source: `message ${i} by char`,
|
||||
prompt: `\x01{{${msg.name ?? (msg.saying ? findCharacterbyId(msg.saying)?.name : null) ?? char.name}}}:` + msg.data + '\x01'
|
||||
prompt: `\x01{{${msg.name ?? (msg.saying ? findCharacterbyId(msg.saying)?.name : null) ?? char.name}}}:` + msg.data + '\x01',
|
||||
data: msg.data
|
||||
}
|
||||
}
|
||||
}).concat(recursivePrompt.map((msg) => {
|
||||
return {
|
||||
source: 'lorebook ' + msg.source,
|
||||
prompt: msg.prompt
|
||||
prompt: msg.prompt,
|
||||
data: msg.data
|
||||
}
|
||||
}))
|
||||
|
||||
@@ -106,7 +111,7 @@ export async function loadLoreBookV3Prompt(){
|
||||
arg.keys[0] = regexString.replace('/'+regexFlag,'')
|
||||
try {
|
||||
const regex = new RegExp(arg.keys[0],regexFlag)
|
||||
const d = regex.test(mText.prompt)
|
||||
const d = regex.test(mText.data)
|
||||
if(d){
|
||||
matchLog.push({
|
||||
prompt: mText.prompt,
|
||||
@@ -127,7 +132,8 @@ export async function loadLoreBookV3Prompt(){
|
||||
mList = mList.map((m) => {
|
||||
return {
|
||||
source: m.source,
|
||||
prompt: m.prompt.toLocaleLowerCase().replace(/\{\{\/\/(.+?)\}\}/g,'').replace(/\{\{comment:(.+?)\}\}/g,'')
|
||||
prompt: m.prompt.toLocaleLowerCase().replace(/\{\{\/\/(.+?)\}\}/g,'').replace(/\{\{comment:(.+?)\}\}/g,''),
|
||||
data: m.data.toLocaleLowerCase().replace(/\{\{\/\/(.+?)\}\}/g,'').replace(/\{\{comment:(.+?)\}\}/g,'')
|
||||
}
|
||||
})
|
||||
|
||||
@@ -135,7 +141,7 @@ export async function loadLoreBookV3Prompt(){
|
||||
let allModeMatched = true
|
||||
|
||||
for(const m of mList){
|
||||
let mText = m.prompt
|
||||
let mText = m.data
|
||||
if(arg.fullWordMatching){
|
||||
const splited = mText.split(' ')
|
||||
for(const key of arg.keys){
|
||||
@@ -510,7 +516,7 @@ export async function importLoreBook(mode:'global'|'local'|'sglobal'){
|
||||
}
|
||||
}
|
||||
|
||||
interface CCLorebook{
|
||||
export interface CCLorebook{
|
||||
key:string[]
|
||||
comment:string
|
||||
content:string
|
||||
|
||||
@@ -132,7 +132,7 @@ export async function generateAIImage(genPrompt:string, currentChar:character, n
|
||||
"parameters": {
|
||||
"params_version": 3,
|
||||
"add_original_image": true,
|
||||
"cfg_rescale": 0,
|
||||
"cfg_rescale": db.NAIImgConfig.cfg_rescale,
|
||||
"controlnet_strength": 1,
|
||||
"dynamic_thresholding": false,
|
||||
"n_samples": 1,
|
||||
@@ -145,7 +145,7 @@ export async function generateAIImage(genPrompt:string, currentChar:character, n
|
||||
"sm": false,
|
||||
"sm_dyn": false,
|
||||
"noise": db.NAIImgConfig.noise,
|
||||
"noise_schedule": "native",
|
||||
"noise_schedule": db.NAIImgConfig.noise_schedule,
|
||||
"strength": db.NAIImgConfig.strength,
|
||||
"ucPreset": 3,
|
||||
"uncond_scale": 1,
|
||||
@@ -435,7 +435,7 @@ export async function generateAIImage(genPrompt:string, currentChar:character, n
|
||||
}
|
||||
await new Promise(r => setTimeout(r, 1000))
|
||||
} // Check history until the generation is complete.
|
||||
const genImgInfo = Object.values(item.outputs).flatMap((output: any) => output.images)[0];
|
||||
const genImgInfo = Object.values(item.outputs).flatMap((output: any) => output.images || [])[0];
|
||||
|
||||
const imgResponse = await fetchNative(createUrl('/view', {
|
||||
filename: genImgInfo.filename,
|
||||
|
||||
@@ -255,8 +255,10 @@ export function setDatabase(data:Database){
|
||||
width:512,
|
||||
height:768,
|
||||
sampler:"k_dpmpp_sde",
|
||||
noise_schedule:"native",
|
||||
steps:28,
|
||||
scale:5,
|
||||
cfg_rescale: 0,
|
||||
sm:true,
|
||||
sm_dyn:false,
|
||||
noise:0.0,
|
||||
@@ -1023,6 +1025,7 @@ export interface Database{
|
||||
}[]
|
||||
igpPrompt:string
|
||||
useTokenizerCaching:boolean
|
||||
showMenuHypaMemoryModal:boolean
|
||||
}
|
||||
|
||||
interface SeparateParameters{
|
||||
@@ -1408,8 +1411,10 @@ export interface NAIImgConfig{
|
||||
width:number,
|
||||
height:number,
|
||||
sampler:string,
|
||||
noise_schedule:string,
|
||||
steps:number,
|
||||
scale:number,
|
||||
cfg_rescale:number,
|
||||
sm:boolean,
|
||||
sm_dyn:boolean,
|
||||
noise:number,
|
||||
|
||||
@@ -6,9 +6,27 @@ import { supportsInlayImage } from "./process/files/inlays";
|
||||
import { risuChatParser } from "./parser.svelte";
|
||||
import { tokenizeGGUFModel } from "./process/models/local";
|
||||
import { globalFetch } from "./globalApi.svelte";
|
||||
import { getModelInfo, LLMTokenizer } from "./model/modellist";
|
||||
import { getModelInfo, LLMTokenizer, type LLMModel } from "./model/modellist";
|
||||
import { pluginV2 } from "./plugins/plugins";
|
||||
import type { GemmaTokenizer } from "@huggingface/transformers";
|
||||
import { LRUMap } from 'mnemonist';
|
||||
|
||||
const MAX_CACHE_SIZE = 1500;
|
||||
|
||||
const encodeCache = new LRUMap<string, number[] | Uint32Array | Int32Array>(MAX_CACHE_SIZE);
|
||||
|
||||
function getHash(
|
||||
data: string,
|
||||
aiModel: string,
|
||||
customTokenizer: string,
|
||||
currentPluginProvider: string,
|
||||
googleClaudeTokenizing: boolean,
|
||||
modelInfo: LLMModel,
|
||||
pluginTokenizer: string
|
||||
): string {
|
||||
const combined = `${data}::${aiModel}::${customTokenizer}::${currentPluginProvider}::${googleClaudeTokenizing ? '1' : '0'}::${modelInfo.tokenizer}::${pluginTokenizer}`;
|
||||
return combined;
|
||||
}
|
||||
|
||||
|
||||
export const tokenizerList = [
|
||||
@@ -25,100 +43,114 @@ export const tokenizerList = [
|
||||
] as const
|
||||
|
||||
export async function encode(data:string):Promise<(number[]|Uint32Array|Int32Array)>{
|
||||
let db = getDatabase()
|
||||
const db = getDatabase();
|
||||
const modelInfo = getModelInfo(db.aiModel);
|
||||
const pluginTokenizer = pluginV2.providerOptions.get(db.currentPluginProvider)?.tokenizer ?? "none";
|
||||
|
||||
let cacheKey = ''
|
||||
if(db.useTokenizerCaching){
|
||||
cacheKey = getHash(
|
||||
data,
|
||||
db.aiModel,
|
||||
db.customTokenizer,
|
||||
db.currentPluginProvider,
|
||||
db.googleClaudeTokenizing,
|
||||
modelInfo,
|
||||
pluginTokenizer
|
||||
);
|
||||
const cachedResult = encodeCache.get(cacheKey);
|
||||
if (cachedResult !== undefined) {
|
||||
return cachedResult;
|
||||
}
|
||||
}
|
||||
|
||||
let result: number[] | Uint32Array | Int32Array;
|
||||
|
||||
if(db.aiModel === 'openrouter' || db.aiModel === 'reverse_proxy'){
|
||||
switch(db.customTokenizer){
|
||||
case 'mistral':
|
||||
return await tokenizeWebTokenizers(data, 'mistral')
|
||||
result = await tokenizeWebTokenizers(data, 'mistral'); break;
|
||||
case 'llama':
|
||||
return await tokenizeWebTokenizers(data, 'llama')
|
||||
result = await tokenizeWebTokenizers(data, 'llama'); break;
|
||||
case 'novelai':
|
||||
return await tokenizeWebTokenizers(data, 'novelai')
|
||||
result = await tokenizeWebTokenizers(data, 'novelai'); break;
|
||||
case 'claude':
|
||||
return await tokenizeWebTokenizers(data, 'claude')
|
||||
result = await tokenizeWebTokenizers(data, 'claude'); break;
|
||||
case 'novellist':
|
||||
return await tokenizeWebTokenizers(data, 'novellist')
|
||||
result = await tokenizeWebTokenizers(data, 'novellist'); break;
|
||||
case 'llama3':
|
||||
return await tokenizeWebTokenizers(data, 'llama')
|
||||
result = await tokenizeWebTokenizers(data, 'llama'); break;
|
||||
case 'gemma':
|
||||
return await gemmaTokenize(data)
|
||||
result = await gemmaTokenize(data); break;
|
||||
case 'cohere':
|
||||
return await tokenizeWebTokenizers(data, 'cohere')
|
||||
result = await tokenizeWebTokenizers(data, 'cohere'); break;
|
||||
case 'deepseek':
|
||||
return await tokenizeWebTokenizers(data, 'DeepSeek')
|
||||
result = await tokenizeWebTokenizers(data, 'DeepSeek'); break;
|
||||
default:
|
||||
return await tikJS(data, 'o200k_base')
|
||||
result = await tikJS(data, 'o200k_base'); break;
|
||||
}
|
||||
}
|
||||
|
||||
const modelInfo = getModelInfo(db.aiModel)
|
||||
|
||||
if(db.aiModel === 'custom' && pluginV2.providerOptions.get(db.currentPluginProvider)?.tokenizer){
|
||||
const tokenizer = pluginV2.providerOptions.get(db.currentPluginProvider)?.tokenizer
|
||||
switch(tokenizer){
|
||||
} else if (db.aiModel === 'custom' && pluginTokenizer) {
|
||||
switch(pluginTokenizer){
|
||||
case 'mistral':
|
||||
return await tokenizeWebTokenizers(data, 'mistral')
|
||||
result = await tokenizeWebTokenizers(data, 'mistral'); break;
|
||||
case 'llama':
|
||||
return await tokenizeWebTokenizers(data, 'llama')
|
||||
result = await tokenizeWebTokenizers(data, 'llama'); break;
|
||||
case 'novelai':
|
||||
return await tokenizeWebTokenizers(data, 'novelai')
|
||||
result = await tokenizeWebTokenizers(data, 'novelai'); break;
|
||||
case 'claude':
|
||||
return await tokenizeWebTokenizers(data, 'claude')
|
||||
result = await tokenizeWebTokenizers(data, 'claude'); break;
|
||||
case 'novellist':
|
||||
return await tokenizeWebTokenizers(data, 'novellist')
|
||||
result = await tokenizeWebTokenizers(data, 'novellist'); break;
|
||||
case 'llama3':
|
||||
return await tokenizeWebTokenizers(data, 'llama')
|
||||
result = await tokenizeWebTokenizers(data, 'llama'); break;
|
||||
case 'gemma':
|
||||
return await gemmaTokenize(data)
|
||||
result = await gemmaTokenize(data); break;
|
||||
case 'cohere':
|
||||
return await tokenizeWebTokenizers(data, 'cohere')
|
||||
result = await tokenizeWebTokenizers(data, 'cohere'); break;
|
||||
case 'o200k_base':
|
||||
return await tikJS(data, 'o200k_base')
|
||||
result = await tikJS(data, 'o200k_base'); break;
|
||||
case 'cl100k_base':
|
||||
return await tikJS(data, 'cl100k_base')
|
||||
result = await tikJS(data, 'cl100k_base'); break;
|
||||
case 'custom':
|
||||
return await pluginV2.providerOptions.get(db.currentPluginProvider)?.tokenizerFunc?.(data) ?? [0]
|
||||
result = await pluginV2.providerOptions.get(db.currentPluginProvider)?.tokenizerFunc?.(data) ?? [0]; break;
|
||||
default:
|
||||
return await tikJS(data, 'o200k_base')
|
||||
result = await tikJS(data, 'o200k_base'); break;
|
||||
}
|
||||
}
|
||||
|
||||
// Fallback
|
||||
if (result === undefined) {
|
||||
if(modelInfo.tokenizer === LLMTokenizer.NovelList){
|
||||
result = await tokenizeWebTokenizers(data, 'novellist');
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.Claude){
|
||||
result = await tokenizeWebTokenizers(data, 'claude');
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.NovelAI){
|
||||
result = await tokenizeWebTokenizers(data, 'novelai');
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.Mistral){
|
||||
result = await tokenizeWebTokenizers(data, 'mistral');
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.Llama){
|
||||
result = await tokenizeWebTokenizers(data, 'llama');
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.Local){
|
||||
result = await tokenizeGGUFModel(data);
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.tiktokenO200Base){
|
||||
result = await tikJS(data, 'o200k_base');
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.GoogleCloud && db.googleClaudeTokenizing){
|
||||
result = await tokenizeGoogleCloud(data);
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.Gemma || modelInfo.tokenizer === LLMTokenizer.GoogleCloud){
|
||||
result = await gemmaTokenize(data);
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.DeepSeek){
|
||||
result = await tokenizeWebTokenizers(data, 'DeepSeek');
|
||||
} else if(modelInfo.tokenizer === LLMTokenizer.Cohere){
|
||||
result = await tokenizeWebTokenizers(data, 'cohere');
|
||||
} else {
|
||||
result = await tikJS(data);
|
||||
}
|
||||
}
|
||||
|
||||
if(modelInfo.tokenizer === LLMTokenizer.NovelList){
|
||||
const nv= await tokenizeWebTokenizers(data, 'novellist')
|
||||
return nv
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.Claude){
|
||||
return await tokenizeWebTokenizers(data, 'claude')
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.NovelAI){
|
||||
return await tokenizeWebTokenizers(data, 'novelai')
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.Mistral){
|
||||
return await tokenizeWebTokenizers(data, 'mistral')
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.Llama){
|
||||
return await tokenizeWebTokenizers(data, 'llama')
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.Local){
|
||||
return await tokenizeGGUFModel(data)
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.tiktokenO200Base){
|
||||
return await tikJS(data, 'o200k_base')
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.GoogleCloud && db.googleClaudeTokenizing){
|
||||
return await tokenizeGoogleCloud(data)
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.Gemma || modelInfo.tokenizer === LLMTokenizer.GoogleCloud){
|
||||
return await gemmaTokenize(data)
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.DeepSeek){
|
||||
return await tokenizeWebTokenizers(data, 'DeepSeek')
|
||||
}
|
||||
if(modelInfo.tokenizer === LLMTokenizer.Cohere){
|
||||
return await tokenizeWebTokenizers(data, 'cohere')
|
||||
if(db.useTokenizerCaching){
|
||||
encodeCache.set(cacheKey, result);
|
||||
}
|
||||
|
||||
return await tikJS(data)
|
||||
return result;
|
||||
}
|
||||
|
||||
type tokenizerType = 'novellist'|'claude'|'novelai'|'llama'|'mistral'|'llama3'|'gemma'|'cohere'|'googleCloud'|'DeepSeek'
|
||||
@@ -177,6 +209,7 @@ async function gemmaTokenize(text:string) {
|
||||
|
||||
async function tikJS(text:string, model='cl100k_base') {
|
||||
if(!tikParser || lastTikModel !== model){
|
||||
tikParser?.free()
|
||||
if(model === 'cl100k_base'){
|
||||
const {Tiktoken} = await import('@dqbd/tiktoken')
|
||||
const cl100k_base = await import("@dqbd/tiktoken/encoders/cl100k_base.json");
|
||||
|
||||
Reference in New Issue
Block a user