feat: add validation

Also revoked potentially problematic feature(add hypav2data chunk)
TODO:
1. On mid-context editing, currently that is not considered as deletion. Do have optional editedChatIndex to latter dive in more.
2. re-roll mainChunks(re-summarization) functionalities added, but not able to access it.
This commit is contained in:
LightningHyperBlaze45654
2024-12-01 13:00:00 -08:00
parent 835664a7aa
commit 60d4e33893
4 changed files with 230 additions and 142 deletions

View File

@@ -1,4 +1,9 @@
import { getDatabase, type Chat, type character, type groupChat } from "src/ts/storage/database.svelte";
import {
getDatabase,
type Chat,
type character,
type groupChat,
} from "src/ts/storage/database.svelte";
import type { OpenAIChat } from "../index.svelte";
import type { ChatTokenizer } from "src/ts/tokenizer";
import { requestChatData } from "../request";
@@ -11,59 +16,67 @@ export interface HypaV2Data {
chunks: {
text: string;
targetId: string;
chatRange: [number, number]; // Start and end indices of chats summarized
}[];
mainChunks: {
text: string;
targetId: string;
chatRange: [number, number]; // Start and end indices of chats summarized
}[];
}
async function summary(stringlizedChat: string): Promise<{ success: boolean; data: string }> {
async function summary(
stringlizedChat: string
): Promise<{ success: boolean; data: string }> {
const db = getDatabase();
console.log("Summarizing");
if (db.supaModelType === 'distilbart') {
if (db.supaModelType === "distilbart") {
try {
const sum = await runSummarizer(stringlizedChat);
return { success: true, data: sum };
} catch (error) {
return {
success: false,
data: "SupaMemory: Summarizer: " + `${error}`
data: "SupaMemory: Summarizer: " + `${error}`,
};
}
}
const supaPrompt = db.supaMemoryPrompt === '' ?
"[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output.]\n"
: db.supaMemoryPrompt;
let result = '';
const supaPrompt =
db.supaMemoryPrompt === ""
? "[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output.]\n"
: db.supaMemoryPrompt;
let result = "";
if (db.supaModelType !== 'subModel') {
const promptbody = stringlizedChat + '\n\n' + supaPrompt + "\n\nOutput:";
if (db.supaModelType !== "subModel") {
const promptbody = stringlizedChat + "\n\n" + supaPrompt + "\n\nOutput:";
const da = await globalFetch("https://api.openai.com/v1/completions", {
headers: {
"Content-Type": "application/json",
"Authorization": "Bearer " + db.supaMemoryKey
Authorization: "Bearer " + db.supaMemoryKey,
},
method: "POST",
body: {
"model": db.supaModelType === 'curie' ? "text-curie-001"
: db.supaModelType === 'instruct35' ? 'gpt-3.5-turbo-instruct'
: "text-davinci-003",
"prompt": promptbody,
"max_tokens": 600,
"temperature": 0
}
})
model:
db.supaModelType === "curie"
? "text-curie-001"
: db.supaModelType === "instruct35"
? "gpt-3.5-turbo-instruct"
: "text-davinci-003",
prompt: promptbody,
max_tokens: 600,
temperature: 0,
},
});
console.log("Using openAI instruct 3.5 for SupaMemory");
try {
if (!da.ok) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da)
data: "SupaMemory: HTTP: " + JSON.stringify(da),
};
}
@@ -72,7 +85,7 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
if (!result) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da)
data: "SupaMemory: HTTP: " + JSON.stringify(da),
};
}
@@ -80,34 +93,46 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
} catch (error) {
return {
success: false,
data: "SupaMemory: HTTP: " + error
data: "SupaMemory: HTTP: " + error,
};
}
} else {
let parsedPrompt = parseChatML(supaPrompt.replaceAll('{{slot}}', stringlizedChat))
let parsedPrompt = parseChatML(
supaPrompt.replaceAll("{{slot}}", stringlizedChat)
);
const promptbody: OpenAIChat[] = parsedPrompt ?? [
{
role: "user",
content: stringlizedChat
content: stringlizedChat,
},
{
role: "system",
content: supaPrompt
}
content: supaPrompt,
},
];
console.log("Using submodel: ", db.subModel, "for supaMemory model");
const da = await requestChatData({
formated: promptbody,
bias: {},
useStreaming: false,
noMultiGen: true
}, 'memory');
if (da.type === 'fail' || da.type === 'streaming' || da.type === 'multiline') {
console.log(
"Using submodel: ",
db.subModel,
"for supaMemory model"
);
const da = await requestChatData(
{
formated: promptbody,
bias: {},
useStreaming: false,
noMultiGen: true,
},
"memory"
);
if (
da.type === "fail" ||
da.type === "streaming" ||
da.type === "multiline"
) {
return {
success: false,
data: "SupaMemory: HTTP: " + da.result
data: "SupaMemory: HTTP: " + da.result,
};
}
result = da.result;
@@ -115,6 +140,43 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
return { success: true, data: result };
}
function cleanInvalidChunks(
chats: OpenAIChat[],
data: HypaV2Data,
editedChatIndex?: number
): void {
// If editedChatIndex is provided, remove chunks and mainChunks that summarize chats from that index onwards
if (editedChatIndex !== undefined) {
data.mainChunks = data.mainChunks.filter(
(chunk) => chunk.chatRange[1] < editedChatIndex
);
data.chunks = data.chunks.filter(
(chunk) => chunk.chatRange[1] < editedChatIndex
);
} else {
// Build a set of current chat memo IDs
const currentChatIds = new Set(chats.map((chat) => chat.memo));
// Filter mainChunks
data.mainChunks = data.mainChunks.filter((chunk) => {
// Check if all chat memos in the range exist
const [startIdx, endIdx] = chunk.chatRange;
for (let i = startIdx; i <= endIdx; i++) {
if (!currentChatIds.has(chats[i]?.memo)) {
return false; // Chat no longer exists, remove this mainChunk
}
}
return true;
});
// Similarly for chunks
data.chunks = data.chunks.filter(() => {
// Since chunks are associated with mainChunks, they have been filtered already
return true;
});
}
}
export async function hypaMemoryV2(
chats: OpenAIChat[],
currentTokens: number,
@@ -122,12 +184,19 @@ export async function hypaMemoryV2(
room: Chat,
char: character | groupChat,
tokenizer: ChatTokenizer,
arg: { asHyper?: boolean, summaryModel?: string, summaryPrompt?: string, hypaModel?: string } = {}
): Promise<{ currentTokens: number; chats: OpenAIChat[]; error?: string; memory?: HypaV2Data; }> {
editedChatIndex?: number
): Promise<{
currentTokens: number;
chats: OpenAIChat[];
error?: string;
memory?: HypaV2Data;
}> {
const db = getDatabase();
const data: HypaV2Data = room.hypaV2Data ?? { chunks: [], mainChunks: [] };
// Clean invalid chunks based on the edited chat index
cleanInvalidChunks(chats, data, editedChatIndex);
let allocatedTokens = db.hypaAllocatedTokens;
let chunkSize = db.hypaChunkSize;
currentTokens += allocatedTokens + 50;
@@ -136,49 +205,40 @@ export async function hypaMemoryV2(
// Error handling for infinite summarization attempts
let summarizationFailures = 0;
const maxSummarizationFailures = 3;
let lastMainChunkTargetId = '';
// Ensure correct targetId matching
const getValidChatIndex = (targetId: string) => {
return chats.findIndex(chat => chat.memo === targetId);
};
// Processing mainChunks
if (data.mainChunks.length > 0) {
const chunk = data.mainChunks[0];
const ind = getValidChatIndex(chunk.targetId);
if (ind !== -1) {
const removedChats = chats.splice(0, ind + 1);
console.log("removed chats", removedChats);
for (const chat of removedChats) {
currentTokens -= await tokenizer.tokenizeChat(chat);
}
mainPrompt = chunk.text;
const mpToken = await tokenizer.tokenizeChat({ role: 'system', content: mainPrompt });
allocatedTokens -= mpToken;
}
}
const summarizedIndices = new Set<number>();
// Token management loop
while (currentTokens >= maxContextTokens) {
let idx = 0;
let targetId = '';
let targetId = "";
const halfData: OpenAIChat[] = [];
let halfDataTokens = 0;
while (halfDataTokens < chunkSize && (idx <= chats.length - 4)) { // Ensure latest two chats are not added to summarization.
const chat = chats[idx];
halfDataTokens += await tokenizer.tokenizeChat(chat);
halfData.push(chat);
let startIdx = -1;
// Find the next batch of chats to summarize
while (
halfDataTokens < chunkSize &&
idx < chats.length - 2 // Ensure latest two chats are not added to summarization.
) {
if (!summarizedIndices.has(idx)) {
const chat = chats[idx];
if (startIdx === -1) startIdx = idx;
halfDataTokens += await tokenizer.tokenizeChat(chat);
halfData.push(chat);
targetId = chat.memo;
}
idx++;
targetId = chat.memo;
console.log("current target chat: ", chat);
}
const endIdx = idx - 1; // End index of the chats being summarized
// Avoid summarizing the last two chats
if (halfData.length < 3) break;
const stringlizedChat = halfData.map(e => `${e.role}: ${e.content}`).join('\n');
const stringlizedChat = halfData
.map((e) => `${e.role}: ${e.content}`)
.join("\n");
const summaryData = await summary(stringlizedChat);
if (!summaryData.success) {
@@ -187,7 +247,8 @@ export async function hypaMemoryV2(
return {
currentTokens: currentTokens,
chats: chats,
error: "Summarization failed multiple times. Aborting to prevent infinite loop."
error:
"Summarization failed multiple times. Aborting to prevent infinite loop.",
};
}
continue;
@@ -195,117 +256,142 @@ export async function hypaMemoryV2(
summarizationFailures = 0; // Reset failure counter on success
const summaryDataToken = await tokenizer.tokenizeChat({ role: 'system', content: summaryData.data });
const summaryDataToken = await tokenizer.tokenizeChat({
role: "system",
content: summaryData.data,
});
mainPrompt += `\n\n${summaryData.data}`;
currentTokens -= halfDataTokens;
allocatedTokens -= summaryDataToken;
data.mainChunks.unshift({
text: summaryData.data,
targetId: targetId
targetId: targetId,
chatRange: [startIdx, endIdx],
});
// Split the summary into chunks based on double line breaks
const splitted = summaryData.data.split('\n\n').map(e => e.trim()).filter(e => e.length > 0);
const splitted = summaryData.data
.split("\n\n")
.map((e) => e.trim())
.filter((e) => e.length > 0);
// Update chunks with the new summary
data.chunks.push(...splitted.map(e => ({
text: e,
targetId: targetId
})));
data.chunks.push(
...splitted.map((e) => ({
text: e,
targetId: targetId,
chatRange: [startIdx, endIdx] as [number, number],
}))
);
// Remove summarized chats
chats.splice(0, idx);
// Mark the chats as summarized
for (let i = startIdx; i <= endIdx; i++) {
summarizedIndices.add(i);
}
}
// Construct the mainPrompt from mainChunks until half of the allocatedTokens are used
// Construct the mainPrompt from mainChunks
mainPrompt = "";
let mainPromptTokens = 0;
for (const chunk of data.mainChunks) {
const chunkTokens = await tokenizer.tokenizeChat({ role: 'system', content: chunk.text });
const chunkTokens = await tokenizer.tokenizeChat({
role: "system",
content: chunk.text,
});
if (mainPromptTokens + chunkTokens > allocatedTokens / 2) break;
mainPrompt += `\n\n${chunk.text}`;
mainPromptTokens += chunkTokens;
lastMainChunkTargetId = chunk.targetId;
}
// Fetch additional memory from chunks
const processor = new HypaProcesser(db.hypaModel);
processor.oaikey = db.supaMemoryKey;
// Find the smallest index of chunks with the same targetId as lastMainChunkTargetId
const lastMainChunkIndex = data.chunks.reduce((minIndex, chunk, index) => {
if (chunk.targetId === lastMainChunkTargetId) {
return Math.min(minIndex, index);
}
return minIndex;
}, data.chunks.length);
// Filter chunks to only include those older than the last mainChunk's targetId
const olderChunks = lastMainChunkIndex !== data.chunks.length
? data.chunks.slice(0, lastMainChunkIndex)
: data.chunks;
console.log("Older Chunks:", olderChunks);
// Add older chunks to processor for similarity search
await processor.addText(olderChunks.filter(v => v.text.trim().length > 0).map(v => "search_document: " + v.text.trim()));
// Add chunks to processor for similarity search
await processor.addText(
data.chunks
.filter((v) => v.text.trim().length > 0)
.map((v) => "search_document: " + v.text.trim())
);
let scoredResults: { [key: string]: number } = {};
for (let i = 0; i < 3; i++) {
const pop = chats[chats.length - i - 1];
if (!pop) break;
const searched = await processor.similaritySearchScored(`search_query: ${pop.content}`);
const searched = await processor.similaritySearchScored(
`search_query: ${pop.content}`
);
for (const result of searched) {
const score = result[1] / (i + 1);
scoredResults[result[0]] = (scoredResults[result[0]] || 0) + score;
}
}
const scoredArray = Object.entries(scoredResults).sort((a, b) => b[1] - a[1]);
const scoredArray = Object.entries(scoredResults).sort(
(a, b) => b[1] - a[1]
);
let chunkResultPrompts = "";
let chunkResultTokens = 0;
while (allocatedTokens - mainPromptTokens - chunkResultTokens > 0 && scoredArray.length > 0) {
while (
allocatedTokens - mainPromptTokens - chunkResultTokens > 0 &&
scoredArray.length > 0
) {
const [text] = scoredArray.shift();
const tokenized = await tokenizer.tokenizeChat({ role: 'system', content: text.substring(14) });
if (tokenized > allocatedTokens - mainPromptTokens - chunkResultTokens) break;
chunkResultPrompts += text.substring(14) + '\n\n';
const tokenized = await tokenizer.tokenizeChat({
role: "system",
content: text.substring(14),
});
if (
tokenized >
allocatedTokens - mainPromptTokens - chunkResultTokens
)
break;
chunkResultPrompts += text.substring(14) + "\n\n";
chunkResultTokens += tokenized;
}
const fullResult = `<Past Events Summary>${mainPrompt}</Past Events Summary>\n<Past Events Details>${chunkResultPrompts}</Past Events Details>`;
chats.unshift({
// Filter out summarized chats
const unsummarizedChats = chats.filter(
(_, idx) => !summarizedIndices.has(idx)
);
// Insert the memory system prompt at the beginning
unsummarizedChats.unshift({
role: "system",
content: fullResult,
memo: "supaMemory"
memo: "supaMemory",
});
// Add the remaining chats after the last mainChunk's targetId
const lastTargetId = data.mainChunks.length > 0 ? data.mainChunks[0].targetId : null;
if (lastTargetId) {
const lastIndex = getValidChatIndex(lastTargetId);
if (lastIndex !== -1) {
const remainingChats = chats.slice(lastIndex + 1);
chats = [chats[0], ...remainingChats];
}
}
// Add last two chats if they exist and are not duplicates
if (lastTwoChats.length === 2) {
const [lastChat1, lastChat2] = lastTwoChats;
if (!chats.some(chat => chat.memo === lastChat1.memo)) {
chats.push(lastChat1);
}
if (!chats.some(chat => chat.memo === lastChat2.memo)) {
chats.push(lastChat2);
// Add the last two chats back if they were removed
const lastTwoChatsSet = new Set(lastTwoChats.map((chat) => chat.memo));
console.log(lastTwoChatsSet) // Not so sure if chat.memo is unique id.
for (const chat of lastTwoChats) {
if (!unsummarizedChats.find((c) => c.memo === chat.memo)) {
unsummarizedChats.push(chat);
}
}
console.log("model being used: ", db.hypaModel, db.supaModelType, "\nCurrent session tokens: ", currentTokens, "\nAll chats, including memory system prompt: ", chats, "\nMemory data, with all the chunks: ", data);
// Recalculate currentTokens
currentTokens = await tokenizer.tokenizeChats(unsummarizedChats);
console.log(
"Model being used: ",
db.hypaModel,
db.supaModelType,
"\nCurrent session tokens: ",
currentTokens,
"\nAll chats, including memory system prompt: ",
unsummarizedChats,
"\nMemory data, with all the chunks: ",
data
);
return {
currentTokens: currentTokens,
chats: chats,
memory: data
chats: unsummarizedChats,
memory: data,
};
}