[feat] hypamemory first commit

This commit is contained in:
kwaroran
2023-06-29 00:25:51 +09:00
parent 1026945996
commit 6dc105c69a
5 changed files with 727 additions and 33 deletions

View File

@@ -0,0 +1,369 @@
import { get } from "svelte/store";
import type { OpenAIChat } from "..";
import { DataBase, type Chat, type character, type groupChat } from "../../storage/database";
import { tokenize, type ChatTokenizer } from "../../tokenizer";
import { requestChatData } from "../request";
import { cloneDeep } from "lodash";
import { HypaProcesser } from "./hypamemory";
import { stringlizeChat } from "../stringlize";
export async function supaMemory(
chats:OpenAIChat[],
currentTokens:number,
maxContextTokens:number,
room:Chat,
char:character|groupChat,
tokenizer:ChatTokenizer,
arg:{asHyper?:boolean} = {}
): Promise<{ currentTokens: number; chats: OpenAIChat[]; error?:string; memory?:string;lastId?:string}>{
const db = get(DataBase)
currentTokens += 10
if(currentTokens > maxContextTokens){
let coIndex = -1
for(let i=0;i<chats.length;i++){
if(chats[i].memo === 'NewChat'){
coIndex = i
break
}
}
if(coIndex !== -1){
for(let i=0;i<coIndex;i++){
currentTokens -= await tokenizer.tokenizeChat(chats[0])
chats.splice(0, 1)
}
}
let supaMemory = ''
let hypaChunks:string[] = []
let lastId = ''
let HypaData:HypaData[] = []
if(room.supaMemoryData && room.supaMemoryData.length > 4){
const splited = room.supaMemoryData.split('\n')
let id = splited.splice(0,1)[0]
const data = splited.join('\n')
if(arg.asHyper && (!id.startsWith("hypa:"))){
supaMemory = ""
}
else{
if(id.startsWith("hypa:")){
if((!arg.asHyper)){
return {
currentTokens: currentTokens,
chats: chats,
error: "SupaMemory: Data saved in hypaMemory, loaded as SupaMemory."
}
}
HypaData = JSON.parse(data.substring(0,5).trim())
if(!Array.isArray(HypaData)){
return {
currentTokens: currentTokens,
chats: chats,
error: "hypaMemory: hypaMemory isn't Array"
}
}
let indexSelected = -1
for(let i=0;i<HypaData.length;i++){
let i =0;
let countTokens = currentTokens
let countChats = cloneDeep(chats)
while(true){
if(countChats.length === 0){
break
}
if(countChats[0].memo === HypaData[i].id){
lastId = HypaData[i].id
currentTokens = countTokens
chats = countChats
indexSelected = i
break
}
countTokens -= await tokenizer.tokenizeChat(countChats[0])
countChats.splice(0, 1)
i += 1
}
if(indexSelected !== -1){
break
}
}
if(indexSelected === -1){
return {
currentTokens: currentTokens,
chats: chats,
error: "hypaMemory: chat ID not found"
}
}
supaMemory = HypaData[indexSelected].supa
hypaChunks = HypaData[indexSelected].hypa
}
else{
let i =0;
while(true){
if(chats.length === 0){
return {
currentTokens: currentTokens,
chats: chats,
error: "SupaMemory: chat ID not found"
}
}
if(chats[0].memo === id){
lastId = id
break
}
currentTokens -= await tokenizer.tokenizeChat(chats[0])
chats.splice(0, 1)
i += 1
}
supaMemory = data
currentTokens += await tokenize(supaMemory)
}
}
}
if(currentTokens < maxContextTokens){
chats.unshift({
role: "system",
content: supaMemory
})
return {
currentTokens: currentTokens,
chats: chats
}
}
async function summarize(stringlizedChat:string){
const supaPrompt = db.supaMemoryPrompt === '' ?
"[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output to reduce tokens for gpt3 and other sublanguage models]\n"
: db.supaMemoryPrompt
let result = ''
if(db.supaMemoryType !== 'subModel'){
const promptbody = stringlizedChat + '\n\n' + supaPrompt + "\n\nOutput:"
const da = await fetch("https://api.openai.com/v1/completions",{
headers: {
"Content-Type": "application/json",
"Authorization": "Bearer " + db.supaMemoryKey
},
method: "POST",
body: JSON.stringify({
"model": db.supaMemoryType === 'curie' ? "text-curie-001" : "text-davinci-003",
"prompt": promptbody,
"max_tokens": 600,
"temperature": 0
})
})
if(da.status < 200 || da.status >= 300){
return {
currentTokens: currentTokens,
chats: chats,
error: "SupaMemory: HTTP: " + await da.text()
}
}
result = (await da.json()).choices[0].text.trim()
}
else {
const promptbody:OpenAIChat[] = [
{
role: "user",
content: stringlizedChat
},
{
role: "system",
content: supaPrompt
}
]
const da = await requestChatData({
formated: promptbody,
bias: {}
}, 'submodel')
if(da.type === 'fail' || da.type === 'streaming' || da.type === 'multiline'){
return {
currentTokens: currentTokens,
chats: chats,
error: "SupaMemory: HTTP: " + da.result
}
}
result = da.result
}
return result
}
let hypaResult = ""
if(arg.asHyper){
const hypa = new HypaProcesser()
await hypa.addText(hypaChunks)
const filteredChat = chats.filter((r) => r.role !== 'system' && r.role !== 'function')
const s = await hypa.similaritySearch(stringlizeChat(filteredChat.slice(0, 4)))
hypaResult = s.slice(0,4).join("\n\n")
currentTokens += await tokenizer.tokenizeChat({
role: "assistant",
content: hypaResult
})
}
while(currentTokens > maxContextTokens){
const beforeToken = currentTokens
let maxChunkSize = maxContextTokens > 3500 ? 1200 : Math.floor(maxContextTokens / 3)
let summarized = false
let chunkSize = 0
let stringlizedChat = ''
let spiceLen = 0
while(true){
const cont = chats[spiceLen]
if(!cont){
currentTokens = beforeToken
stringlizedChat = ''
chunkSize = 0
spiceLen = 0
if(summarized){
if(maxChunkSize < 500){
return {
currentTokens: currentTokens,
chats: chats,
error: "Not Enough Tokens"
}
}
maxChunkSize = maxChunkSize * 0.7
}
else{
const result = await summarize(supaMemory)
if(typeof(result) !== 'string'){
return result
}
console.log(currentTokens)
currentTokens -= await tokenize(supaMemory)
currentTokens += await tokenize(result + '\n\n')
console.log(currentTokens)
supaMemory = result + '\n\n'
summarized = true
if(currentTokens <= maxContextTokens){
break
}
}
continue
}
const tokens = await tokenizer.tokenizeChat(cont)
if((chunkSize + tokens) > maxChunkSize){
if(stringlizedChat === ''){
if(cont.role !== 'function' && cont.role !== 'system'){
stringlizedChat += `${cont.role === 'assistant' ? char.type === 'group' ? '' : char.name : db.username}: ${cont.content}\n\n`
}
}
lastId = cont.memo
break
}
stringlizedChat += `${cont.role === 'assistant' ? char.type === 'group' ? '' : char.name : db.username}: ${cont.content}\n\n`
spiceLen += 1
currentTokens -= tokens
chunkSize += tokens
}
chats.splice(0, spiceLen)
if(stringlizedChat !== ''){
const result = await summarize(stringlizedChat)
if(typeof(result) !== 'string'){
return result
}
const tokenz = await tokenize(result + '\n\n')
currentTokens += tokenz
supaMemory += result.replace(/\n+/g,'\n') + '\n\n'
let SupaMemoryList = supaMemory.split('\n\n')
if(SupaMemoryList.length >= 5){
const oldSupaMemory = supaMemory
let modifies:string[] = []
for(let i=0;i<3;i++){
modifies.push(SupaMemoryList.shift())
}
hypaChunks.push(...modifies)
const result = await summarize(supaMemory)
if(typeof(result) !== 'string'){
return result
}
modifies.unshift(result.replace(/\n+/g,'\n'))
supaMemory = modifies.join('\n\n') + '\n\n'
currentTokens -= await tokenize(oldSupaMemory)
currentTokens += await tokenize(supaMemory)
}
}
}
chats.unshift({
role: "system",
content: supaMemory,
name: "supaMemory"
})
if(arg.asHyper){
if(hypaResult !== ''){
chats.unshift({
role: "assistant",
content: hypaResult
})
}
if(HypaData[0] && HypaData[0].id === lastId){
HypaData[0].hypa = hypaChunks
HypaData[0].supa = supaMemory
}
else{
HypaData.push({
id: lastId,
hypa: hypaChunks,
supa: supaMemory
})
}
return {
currentTokens: currentTokens,
chats: chats,
memory: JSON.stringify(HypaData, null, 2),
lastId: lastId
}
}
return {
currentTokens: currentTokens,
chats: chats,
memory: lastId + '\n' + supaMemory,
lastId: lastId
}
}
return {
currentTokens: currentTokens,
chats: chats
}
}
type HypaData = {id:string,supa:string,hypa:string[]}