Add plenty of features

This commit is contained in:
Kwaroran
2024-11-27 06:01:42 +09:00
parent 73b7fd9156
commit 981ec3921e
13 changed files with 285 additions and 133 deletions

View File

@@ -9,6 +9,7 @@ export enum LLMFlags{
hasCache,
hasFullSystemPrompt,
hasFirstSystemPrompt,
hasStreaming,
requiresAlternateRole,
mustStartWithUserInput,
}
@@ -26,6 +27,7 @@ export enum LLMProvider{
WebLLM,
Horde,
AWS,
AI21
}
export enum LLMFormat{
@@ -87,7 +89,7 @@ export const LLMModels: LLMModel[] = [
name: 'GPT-3.5',
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [LLMFlags.hasFullSystemPrompt],
flags: [LLMFlags.hasFullSystemPrompt, LLMFlags.hasStreaming],
parameters: OpenAIParameters,
},
{
@@ -96,7 +98,7 @@ export const LLMModels: LLMModel[] = [
name: 'InstructGPT-3.5',
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAILegacyInstruct,
flags: [LLMFlags.hasFullSystemPrompt],
flags: [LLMFlags.hasFullSystemPrompt, LLMFlags.hasStreaming],
parameters: OpenAIParameters,
},
{
@@ -105,7 +107,7 @@ export const LLMModels: LLMModel[] = [
name: 'GPT-4 Turbo',
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [LLMFlags.hasFullSystemPrompt],
flags: [LLMFlags.hasFullSystemPrompt, LLMFlags.hasStreaming],
parameters: OpenAIParameters,
},
{
@@ -116,7 +118,8 @@ export const LLMModels: LLMModel[] = [
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasImageInput,
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
recommended: true,
parameters: OpenAIParameters,
@@ -129,7 +132,8 @@ export const LLMModels: LLMModel[] = [
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasImageInput,
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
recommended: true,
parameters: OpenAIParameters,
@@ -141,7 +145,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -152,7 +157,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -163,7 +169,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -174,7 +181,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -185,7 +193,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -196,7 +205,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -207,7 +217,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -218,7 +229,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -229,7 +241,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -240,7 +253,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -251,7 +265,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -262,7 +277,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -273,7 +289,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -283,7 +300,10 @@ export const LLMModels: LLMModel[] = [
name: 'GPT-4 Vision 1106',
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [LLMFlags.hasImageInput],
flags: [
LLMFlags.hasImageInput,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
{
@@ -293,7 +313,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -305,7 +326,8 @@ export const LLMModels: LLMModel[] = [
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasImageInput,
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -317,7 +339,8 @@ export const LLMModels: LLMModel[] = [
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasImageInput,
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -329,7 +352,8 @@ export const LLMModels: LLMModel[] = [
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasImageInput,
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -341,7 +365,8 @@ export const LLMModels: LLMModel[] = [
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasImageInput,
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -352,7 +377,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -363,7 +389,8 @@ export const LLMModels: LLMModel[] = [
provider: LLMProvider.OpenAI,
format: LLMFormat.OpenAICompatible,
flags: [
LLMFlags.hasFullSystemPrompt
LLMFlags.hasFullSystemPrompt,
LLMFlags.hasStreaming
],
parameters: OpenAIParameters,
},
@@ -376,7 +403,8 @@ export const LLMModels: LLMModel[] = [
flags: [
LLMFlags.hasPrefill,
LLMFlags.hasImageInput,
LLMFlags.hasFirstSystemPrompt
LLMFlags.hasFirstSystemPrompt,
LLMFlags.hasStreaming
],
recommended: true,
parameters: ClaudeParameters,
@@ -390,7 +418,8 @@ export const LLMModels: LLMModel[] = [
flags: [
LLMFlags.hasPrefill,
LLMFlags.hasImageInput,
LLMFlags.hasFirstSystemPrompt
LLMFlags.hasFirstSystemPrompt,
LLMFlags.hasStreaming
],
recommended: true,
parameters: ClaudeParameters,
@@ -404,7 +433,8 @@ export const LLMModels: LLMModel[] = [
flags: [
LLMFlags.hasPrefill,
LLMFlags.hasImageInput,
LLMFlags.hasFirstSystemPrompt
LLMFlags.hasFirstSystemPrompt,
LLMFlags.hasStreaming
],
parameters: ClaudeParameters,
},
@@ -417,7 +447,8 @@ export const LLMModels: LLMModel[] = [
flags: [
LLMFlags.hasPrefill,
LLMFlags.hasImageInput,
LLMFlags.hasFirstSystemPrompt
LLMFlags.hasFirstSystemPrompt,
LLMFlags.hasStreaming
],
parameters: ClaudeParameters,
},
@@ -430,7 +461,8 @@ export const LLMModels: LLMModel[] = [
flags: [
LLMFlags.hasPrefill,
LLMFlags.hasImageInput,
LLMFlags.hasFirstSystemPrompt
LLMFlags.hasFirstSystemPrompt,
LLMFlags.hasStreaming
],
parameters: ClaudeParameters,
},
@@ -443,7 +475,8 @@ export const LLMModels: LLMModel[] = [
flags: [
LLMFlags.hasPrefill,
LLMFlags.hasImageInput,
LLMFlags.hasFirstSystemPrompt
LLMFlags.hasFirstSystemPrompt,
LLMFlags.hasStreaming
],
parameters: ClaudeParameters,
},
@@ -456,7 +489,8 @@ export const LLMModels: LLMModel[] = [
flags: [
LLMFlags.hasPrefill,
LLMFlags.hasImageInput,
LLMFlags.hasFirstSystemPrompt
LLMFlags.hasFirstSystemPrompt,
LLMFlags.hasStreaming
],
parameters: ClaudeParameters,
},
@@ -469,7 +503,8 @@ export const LLMModels: LLMModel[] = [
flags: [
LLMFlags.hasPrefill,
LLMFlags.hasImageInput,
LLMFlags.hasFirstSystemPrompt
LLMFlags.hasFirstSystemPrompt,
LLMFlags.hasStreaming
],
parameters: ClaudeParameters,
},
@@ -593,7 +628,7 @@ export const LLMModels: LLMModel[] = [
id: 'openrouter',
provider: LLMProvider.AsIs,
format: LLMFormat.OpenAICompatible,
flags: [LLMFlags.hasFullSystemPrompt, LLMFlags.hasImageInput],
flags: [LLMFlags.hasFullSystemPrompt, LLMFlags.hasImageInput, LLMFlags.hasStreaming],
parameters: ['temperature', 'top_p', 'frequency_penalty', 'presence_penalty', 'repetition_penalty', 'min_p', 'top_a', 'top_k'],
recommended: true
},
@@ -930,7 +965,7 @@ export const LLMModels: LLMModel[] = [
name: "Custom API",
provider: LLMProvider.AsIs,
format: LLMFormat.OpenAICompatible,
flags: [LLMFlags.hasFullSystemPrompt],
flags: [LLMFlags.hasFullSystemPrompt, LLMFlags.hasStreaming],
recommended: true,
parameters: ['temperature', 'top_p', 'frequency_penalty', 'presence_penalty', 'repetition_penalty', 'min_p', 'top_a', 'top_k']
}

View File

@@ -1465,9 +1465,8 @@ export async function sendChat(chatProcessIndex = -1,arg:{
formated: promptbody,
bias: emobias,
currentChar: currentChar,
temperature: 0.4,
maxTokens: 30,
}, 'submodel', abortSignal)
}, 'emotion', abortSignal)
if(rq.type === 'fail' || rq.type === 'streaming' || rq.type === 'multiline'){
if(abortSignal.aborted){

View File

@@ -5,6 +5,7 @@ import { requestChatData } from "../request";
import { HypaProcesser } from "./hypamemory";
import { globalFetch } from "src/ts/globalApi.svelte";
import { runSummarizer } from "../transformers";
import { parseChatML } from "src/ts/parser.svelte";
export interface HypaV2Data {
chunks: {
@@ -83,7 +84,10 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
};
}
} else {
const promptbody: OpenAIChat[] = [
let parsedPrompt = parseChatML(supaPrompt.replaceAll('{{slot}}', stringlizedChat))
const promptbody: OpenAIChat[] = parsedPrompt ?? [
{
role: "user",
content: stringlizedChat
@@ -99,7 +103,7 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
bias: {},
useStreaming: false,
noMultiGen: true
}, 'submodel');
}, 'memory');
if (da.type === 'fail' || da.type === 'streaming' || da.type === 'multiline') {
return {
success: false,

View File

@@ -7,6 +7,7 @@ import { stringlizeChat } from "../stringlize";
import { globalFetch } from "src/ts/globalApi.svelte";
import { runSummarizer } from "../transformers";
import { getUserName } from "src/ts/util";
import { parseChatML } from "src/ts/parser.svelte";
export async function supaMemory(
chats:OpenAIChat[],
@@ -252,7 +253,8 @@ export async function supaMemory(
}
}
else {
const promptbody:OpenAIChat[] = [
let parsedPrompt = parseChatML(supaPrompt.replaceAll('{{slot}}', stringlizedChat))
const promptbody:OpenAIChat[] = parsedPrompt ?? [
{
role: "user",
content: stringlizedChat
@@ -267,7 +269,7 @@ export async function supaMemory(
bias: {},
useStreaming: false,
noMultiGen: true
}, 'submodel')
}, 'memory')
if(da.type === 'fail' || da.type === 'streaming' || da.type === 'multiline'){
return {
currentTokens: currentTokens,

View File

@@ -1,5 +1,5 @@
import type { MultiModal, OpenAIChat, OpenAIChatFull } from "./index.svelte";
import { getCurrentCharacter, getDatabase, type character } from "../storage/database.svelte";
import { getCurrentCharacter, getDatabase, setDatabase, type character } from "../storage/database.svelte";
import { pluginProcess } from "../plugins/plugins";
import { language } from "../../lang";
import { stringlizeAINChat, getStopStrings, unstringlizeAIN, unstringlizeChat } from "./stringlize";
@@ -47,6 +47,7 @@ interface RequestDataArgumentExtended extends requestDataArgument{
abortSignal?:AbortSignal
modelInfo?:LLMModel
customURL?:string
mode?:ModelModeExtended
}
type requestDataResponse = {
@@ -89,12 +90,31 @@ interface OaiFunctions {
export type Parameter = 'temperature'|'top_k'|'repetition_penalty'|'min_p'|'top_a'|'top_p'|'frequency_penalty'|'presence_penalty'
export type ModelModeExtended = 'model'|'submodel'|'memory'|'emotion'|'otherAx'|'translate'
type ParameterMap = {
[key in Parameter]?: string;
};
function applyParameters(data: { [key: string]: any }, parameters: Parameter[], rename: ParameterMap = {}) {
function applyParameters(data: { [key: string]: any }, parameters: Parameter[], rename: ParameterMap, ModelMode:ModelModeExtended): { [key: string]: any } {
const db = getDatabase()
if(db.seperateParametersEnabled && ModelMode !== 'model'){
if(ModelMode === 'submodel'){
ModelMode = 'otherAx'
}
for(const parameter of parameters){
let value = db.seperateParameters[ModelMode][parameter]
if(value === -1000 || value === undefined){
continue
}
data[rename[parameter] ?? parameter] = value
}
return data
}
for(const parameter of parameters){
let value = 0
switch(parameter){
@@ -141,7 +161,7 @@ function applyParameters(data: { [key: string]: any }, parameters: Parameter[],
return data
}
export async function requestChatData(arg:requestDataArgument, model:'model'|'submodel', abortSignal:AbortSignal=null):Promise<requestDataResponse> {
export async function requestChatData(arg:requestDataArgument, model:ModelModeExtended, abortSignal:AbortSignal=null):Promise<requestDataResponse> {
const db = getDatabase()
let trys = 0
while(true){
@@ -240,7 +260,7 @@ function reformater(formated:OpenAIChat[],modelInfo:LLMModel){
}
export async function requestChatDataMain(arg:requestDataArgument, model:'model'|'submodel', abortSignal:AbortSignal=null):Promise<requestDataResponse> {
export async function requestChatDataMain(arg:requestDataArgument, model:ModelModeExtended, abortSignal:AbortSignal=null):Promise<requestDataResponse> {
const db = getDatabase()
const targ:RequestDataArgumentExtended = arg
targ.formated = safeStructuredClone(arg.formated)
@@ -255,6 +275,7 @@ export async function requestChatDataMain(arg:requestDataArgument, model:'model'
targ.multiGen = ((db.genTime > 1 && targ.aiModel.startsWith('gpt') && (!arg.continue)) && (!arg.noMultiGen))
targ.abortSignal = abortSignal
targ.modelInfo = getModelInfo(targ.aiModel)
targ.mode = model
if(targ.aiModel === 'reverse_proxy'){
targ.modelInfo.internalID = db.customProxyRequestModel
targ.modelInfo.format = db.customAPIFormat
@@ -502,7 +523,7 @@ async function requestOpenAI(arg:RequestDataArgumentExtended):Promise<requestDat
top_p: db.top_p,
safe_prompt: false,
max_tokens: arg.maxTokens,
}, ['temperature', 'presence_penalty', 'frequency_penalty'] ),
}, ['temperature', 'presence_penalty', 'frequency_penalty'], {}, arg.mode ),
headers: {
"Authorization": "Bearer " + db.mistralKey,
},
@@ -625,8 +646,11 @@ async function requestOpenAI(arg:RequestDataArgumentExtended):Promise<requestDat
}
}
body = applyParameters(body,
aiModel === 'openrouter' ? ['temperature', 'top_p', 'frequency_penalty', 'presence_penalty', 'repetition_penalty', 'min_p', 'top_a', 'top_k'] : ['temperature', 'top_p', 'frequency_penalty', 'presence_penalty']
body = applyParameters(
body,
aiModel === 'openrouter' ? ['temperature', 'top_p', 'frequency_penalty', 'presence_penalty', 'repetition_penalty', 'min_p', 'top_a', 'top_k'] : ['temperature', 'top_p', 'frequency_penalty', 'presence_penalty'],
{},
arg.mode
)
if(aiModel === 'reverse_proxy' && db.reverseProxyOobaMode){
@@ -1465,7 +1489,7 @@ async function requestGoogleCloudVertex(arg:RequestDataArgumentExtended):Promise
"maxOutputTokens": maxTokens,
}, ['temperature', 'top_p'], {
'top_p': "topP"
}),
}, arg.mode),
safetySettings: uncensoredCatagory
}
@@ -1523,11 +1547,22 @@ async function requestGoogleCloudVertex(arg:RequestDataArgumentExtended):Promise
const data = await response.json();
return data.access_token;
const token = data.access_token;
const db2 = getDatabase()
db2.vertexAccessToken = token
db2.vertexAccessTokenExpires = Date.now() + 3500 * 1000
setDatabase(db2)
return token;
}
if(arg.modelInfo.format === LLMFormat.VertexAIGemini){
headers['Authorization'] = "Bearer " + generateToken(db.google.clientEmail, db.google.privateKey)
if(db.vertexAccessTokenExpires < Date.now()){
headers['Authorization'] = "Bearer " + generateToken(db.vertexClientEmail, db.vertexPrivateKey)
}
else{
headers['Authorization'] = "Bearer " + db.vertexAccessToken
}
}
const url = arg.customURL ?? (arg.modelInfo.format === LLMFormat.VertexAIGemini ?
@@ -1606,7 +1641,7 @@ async function requestKobold(arg:RequestDataArgumentExtended):Promise<requestDat
'top_a'
], {
'repetition_penalty': 'rep_pen'
}) as KoboldGenerationInputSchema
}, arg.mode) as KoboldGenerationInputSchema
const da = await globalFetch(url.toString(), {
method: "POST",
@@ -1802,7 +1837,7 @@ async function requestCohere(arg:RequestDataArgumentExtended):Promise<requestDat
], {
'top_k': 'k',
'top_p': 'p',
})
}, arg.mode)
if(aiModel !== 'cohere-command-r-03-2024' && aiModel !== 'cohere-command-r-plus-04-2024'){
body.safety_mode = "NONE"
@@ -2091,7 +2126,7 @@ async function requestClaude(arg:RequestDataArgumentExtended):Promise<requestDat
system: systemPrompt.trim(),
max_tokens: maxTokens,
stream: useStreaming ?? false
}, ['temperature', 'top_k', 'top_p'])
}, ['temperature', 'top_k', 'top_p'], {}, arg.mode)
if(systemPrompt === ''){
delete body.system

View File

@@ -448,6 +448,17 @@ export function setDatabase(data:Database){
data.customAPIFormat ??= LLMFormat.OpenAICompatible
data.systemContentReplacement ??= `system: {{slot}}`
data.systemRoleReplacement ??= 'user'
data.vertexAccessToken ??= ''
data.vertexAccessTokenExpires ??= 0
data.vertexClientEmail ??= ''
data.vertexPrivateKey ??= ''
data.seperateParametersEnabled ??= false
data.seperateParameters = {
memory: {},
emotion: {},
translate: {},
otherAx: {}
}
changeLanguage(data.language)
setDatabaseLite(data)
}
@@ -724,8 +735,6 @@ export interface Database{
google: {
accessToken: string
projectId: string
privateKey: string
clientEmail: string
}
mistralKey?:string
chainOfThought?:boolean
@@ -825,6 +834,29 @@ export interface Database{
customAPIFormat:LLMFormat
systemContentReplacement:string
systemRoleReplacement:'user'|'assistant'
vertexPrivateKey: string
vertexClientEmail: string
vertexAccessToken: string
vertexAccessTokenExpires: number
seperateParametersEnabled:boolean
seperateParameters:{
memory: SeparateParameters,
emotion: SeparateParameters,
translate: SeparateParameters,
otherAx: SeparateParameters
}
translateBeforeHTMLFormatting:boolean
}
interface SeparateParameters{
temperature?:number
top_k?:number
repetition_penalty?:number
min_p?:number
top_a?:number
top_p?:number
frequency_penalty?:number
presence_penalty?:number
}
export interface customscript{
@@ -1519,6 +1551,7 @@ import type { HypaV2Data } from '../process/memory/hypav2';
import { decodeRPack, encodeRPack } from '../rpack/rpack_bg';
import { DBState, selectedCharID } from '../stores.svelte';
import { LLMFormat } from '../model/modellist';
import type { Parameter } from '../process/request';
export async function downloadPreset(id:number, type:'json'|'risupreset'|'return' = 'json'){
saveCurrentPreset()

View File

@@ -10,12 +10,17 @@ import { selectedCharID } from "../stores.svelte"
import { getModuleRegexScripts } from "../process/modules"
import { getNodetextToSentence, sleep } from "../util"
import { processScriptFull } from "../process/scripts"
import localforage from "localforage"
let cache={
origin: [''],
trans: ['']
}
const LLMCacheStorage = localforage.createInstance({
name: "LLMTranslateCache"
})
let waitTrans = 0
export async function translate(text:string, reverse:boolean) {
@@ -442,10 +447,10 @@ function needSuperChunkedTranslate(){
return getDatabase().translatorType === 'deeplX'
}
let llmCache = new Map<string, string>()
async function translateLLM(text:string, arg:{to:string}){
if(llmCache.has(text)){
return llmCache.get(text)
async function translateLLM(text:string, arg:{to:string}):Promise<string>{
const cacheMatch = await LLMCacheStorage.getItem(text)
if(cacheMatch){
return cacheMatch as string
}
const styleDecodeRegex = /\<risu-style\>(.+?)\<\/risu-style\>/gms
let styleDecodes:string[] = []
@@ -489,7 +494,7 @@ async function translateLLM(text:string, arg:{to:string}){
useStreaming: false,
noMultiGen: true,
maxTokens: db.translatorMaxResponse,
}, 'submodel')
}, 'translate')
if(rq.type === 'fail' || rq.type === 'streaming' || rq.type === 'multiline'){
alertError(`${rq.result}`)
@@ -498,6 +503,6 @@ async function translateLLM(text:string, arg:{to:string}){
const result = rq.result.replace(/<style-data style-index="(\d+)" ?\/?>/g, (match, p1) => {
return styleDecodes[parseInt(p1)] ?? ''
}).replace(/<\/style-data>/g, '')
llmCache.set(text, result)
await LLMCacheStorage.setItem(text, result)
return result
}