import { getDatabase, type Chat, type character, type groupChat } from "src/ts/storage/database.svelte";
import type { OpenAIChat } from "../index.svelte";
import type { ChatTokenizer } from "src/ts/tokenizer";
import { requestChatData } from "../request";
import { HypaProcesser } from "./hypamemory";
import { globalFetch } from "src/ts/globalApi.svelte";
import { runSummarizer } from "../transformers";
import { parseChatML } from "src/ts/parser.svelte";
export interface HypaV2Data {
chunks: {
text: string;
targetId: string;
}[];
mainChunks: {
text: string;
targetId: string;
}[];
}
async function summary(stringlizedChat: string): Promise<{ success: boolean; data: string }> {
const db = getDatabase();
console.log("Summarizing");
if (db.supaModelType === 'distilbart') {
try {
const sum = await runSummarizer(stringlizedChat);
return { success: true, data: sum };
} catch (error) {
return {
success: false,
data: "SupaMemory: Summarizer: " + `${error}`
};
}
}
const supaPrompt = db.supaMemoryPrompt === '' ?
"[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output to reduce tokens for gpt3 and other sublanguage models]\n"
: db.supaMemoryPrompt;
let result = '';
if (db.supaModelType !== 'subModel') {
const promptbody = stringlizedChat + '\n\n' + supaPrompt + "\n\nOutput:";
const da = await globalFetch("https://api.openai.com/v1/completions", {
headers: {
"Content-Type": "application/json",
"Authorization": "Bearer " + db.supaMemoryKey
},
method: "POST",
body: {
"model": db.supaModelType === 'curie' ? "text-curie-001"
: db.supaModelType === 'instruct35' ? 'gpt-3.5-turbo-instruct'
: "text-davinci-003",
"prompt": promptbody,
"max_tokens": 600,
"temperature": 0
}
})
console.log("Using openAI instruct 3.5 for SupaMemory");
try {
if (!da.ok) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da)
};
}
result = (await da.data)?.choices[0]?.text?.trim();
if (!result) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da)
};
}
return { success: true, data: result };
} catch (error) {
return {
success: false,
data: "SupaMemory: HTTP: " + error
};
}
} else {
let parsedPrompt = parseChatML(supaPrompt.replaceAll('{{slot}}', stringlizedChat))
const promptbody: OpenAIChat[] = (parsedPrompt ?? [
{
role: "user",
content: stringlizedChat
},
{
role: "system",
content: supaPrompt
}
]).map(message => ({
...message,
memo: "supaPrompt"
}));
console.log("Using submodel: ", db.subModel, "for supaMemory model");
const da = await requestChatData({
formated: promptbody,
bias: {},
useStreaming: false,
noMultiGen: true
}, 'memory');
if (da.type === 'fail' || da.type === 'streaming' || da.type === 'multiline') {
return {
success: false,
data: "SupaMemory: HTTP: " + da.result
};
}
result = da.result;
}
return { success: true, data: result };
}
export async function hypaMemoryV2(
chats: OpenAIChat[],
currentTokens: number,
maxContextTokens: number,
room: Chat,
char: character | groupChat,
tokenizer: ChatTokenizer,
arg: { asHyper?: boolean, summaryModel?: string, summaryPrompt?: string, hypaModel?: string } = {}
): Promise<{ currentTokens: number; chats: OpenAIChat[]; error?: string; memory?: HypaV2Data; }> {
const db = getDatabase();
const data: HypaV2Data = room.hypaV2Data ?? { chunks: [], mainChunks: [] };
let allocatedTokens = db.hypaAllocatedTokens;
let chunkSize = db.hypaChunkSize;
currentTokens += allocatedTokens + 50;
let mainPrompt = "";
const lastTwoChats = chats.slice(-2);
// Error handling for infinite summarization attempts
let summarizationFailures = 0;
const maxSummarizationFailures = 3;
let lastMainChunkTargetId = '';
// Ensure correct targetId matching
const getValidChatIndex = (targetId: string) => {
return chats.findIndex(chat => chat.memo === targetId);
};
// Processing mainChunks
if (data.mainChunks.length > 0) {
const chunk = data.mainChunks[0];
const ind = getValidChatIndex(chunk.targetId);
if (ind !== -1) {
const removedChats = chats.splice(0, ind + 1);
console.log("removed chats", removedChats);
for (const chat of removedChats) {
currentTokens -= await tokenizer.tokenizeChat(chat);
}
mainPrompt = chunk.text;
const mpToken = await tokenizer.tokenizeChat({ role: 'system', content: mainPrompt });
allocatedTokens -= mpToken;
}
}
// Token management loop
while (currentTokens >= maxContextTokens) {
let idx = 0;
let targetId = '';
const halfData: OpenAIChat[] = [];
let halfDataTokens = 0;
while (halfDataTokens < chunkSize && (idx <= chats.length - 4)) { // Ensure latest two chats are not added to summarization.
const chat = chats[idx];
halfDataTokens += await tokenizer.tokenizeChat(chat);
halfData.push(chat);
idx++;
targetId = chat.memo;
console.log("current target chat: ", chat);
}
// Avoid summarizing the last two chats
if (halfData.length < 3) break;
const stringlizedChat = halfData.map(e => `${e.role}: ${e.content}`).join('\n');
const summaryData = await summary(stringlizedChat);
if (!summaryData.success) {
summarizationFailures++;
if (summarizationFailures >= maxSummarizationFailures) {
return {
currentTokens: currentTokens,
chats: chats,
error: "Summarization failed multiple times. Aborting to prevent infinite loop."
};
}
continue;
}
summarizationFailures = 0; // Reset failure counter on success
const summaryDataToken = await tokenizer.tokenizeChat({ role: 'system', content: summaryData.data });
mainPrompt += `\n\n${summaryData.data}`;
currentTokens -= halfDataTokens;
allocatedTokens -= summaryDataToken;
data.mainChunks.unshift({
text: summaryData.data,
targetId: targetId
});
// Split the summary into chunks based on double line breaks
const splitted = summaryData.data.split('\n\n').map(e => e.trim()).filter(e => e.length > 0);
// Update chunks with the new summary
data.chunks.push(...splitted.map(e => ({
text: e,
targetId: targetId
})));
// Remove summarized chats
chats.splice(0, idx);
}
// Construct the mainPrompt from mainChunks until half of the allocatedTokens are used
mainPrompt = "";
let mainPromptTokens = 0;
for (const chunk of data.mainChunks) {
const chunkTokens = await tokenizer.tokenizeChat({ role: 'system', content: chunk.text });
if (mainPromptTokens + chunkTokens > allocatedTokens / 2) break;
mainPrompt += `\n\n${chunk.text}`;
mainPromptTokens += chunkTokens;
lastMainChunkTargetId = chunk.targetId;
}
// Fetch additional memory from chunks
const searchDocumentPrefix = "search_document: ";
const processor = new HypaProcesser(db.hypaModel);
processor.oaikey = db.supaMemoryKey;
// Find the smallest index of chunks with the same targetId as lastMainChunkTargetId
const lastMainChunkIndex = data.chunks.reduce((minIndex, chunk, index) => {
if (chunk.targetId === lastMainChunkTargetId) {
return Math.min(minIndex, index);
}
return minIndex;
}, data.chunks.length);
// Filter chunks to only include those older than the last mainChunk's targetId
const olderChunks = lastMainChunkIndex !== data.chunks.length
? data.chunks.slice(0, lastMainChunkIndex)
: data.chunks;
console.log("Older Chunks:", olderChunks);
// Add older chunks to processor for similarity search
await processor.addText(olderChunks.filter(v => v.text.trim().length > 0).map(v => searchDocumentPrefix + v.text.trim()));
let scoredResults: { [key: string]: number } = {};
for (let i = 0; i < 3; i++) {
const pop = chats[chats.length - i - 1];
if (!pop) break;
const searched = await processor.similaritySearchScored(`search_query: ${pop.content}`);
for (const result of searched) {
const score = result[1] / (i + 1);
scoredResults[result[0]] = (scoredResults[result[0]] || 0) + score;
}
}
const scoredArray = Object.entries(scoredResults).sort((a, b) => b[1] - a[1]);
let chunkResultPrompts = "";
let chunkResultTokens = 0;
while (allocatedTokens - mainPromptTokens - chunkResultTokens > 0 && scoredArray.length > 0) {
const [text] = scoredArray.shift();
const tokenized = await tokenizer.tokenizeChat({ role: 'system', content: text.substring(searchDocumentPrefix.length) });
if (tokenized > allocatedTokens - mainPromptTokens - chunkResultTokens) break;
// Ensure strings are truncated correctly using searchDocumentPrefix.length
chunkResultPrompts += text.substring(searchDocumentPrefix.length) + '\n\n';
chunkResultTokens += tokenized;
}
const fullResult = `${mainPrompt}\n${chunkResultPrompts}`;
chats.unshift({
role: "system",
content: fullResult,
memo: "supaMemory"
});
// Add the remaining chats after the last mainChunk's targetId
const lastTargetId = data.mainChunks.length > 0 ? data.mainChunks[0].targetId : null;
if (lastTargetId) {
const lastIndex = getValidChatIndex(lastTargetId);
if (lastIndex !== -1) {
const remainingChats = chats.slice(lastIndex + 1);
chats = [chats[0], ...remainingChats];
}
}
// Add last two chats if they exist and are not duplicates
if (lastTwoChats.length === 2) {
const [lastChat1, lastChat2] = lastTwoChats;
if (!chats.some(chat => chat.memo === lastChat1.memo)) {
chats.push(lastChat1);
}
if (!chats.some(chat => chat.memo === lastChat2.memo)) {
chats.push(lastChat2);
}
}
console.log("model being used: ", db.hypaModel, db.supaModelType, "\nCurrent session tokens: ", currentTokens, "\nAll chats, including memory system prompt: ", chats, "\nMemory data, with all the chunks: ", data);
return {
currentTokens: currentTokens,
chats: chats,
memory: data
};
}