Files
risuai/src/ts/process/memory/hypav2.ts
LightningHyperBlaze45654 4ea365a141 refactor: logging
2024-12-01 19:31:23 -08:00

405 lines
13 KiB
TypeScript

import {
getDatabase,
type Chat,
type character,
type groupChat,
} from "src/ts/storage/database.svelte";
import type { OpenAIChat } from "../index.svelte";
import type { ChatTokenizer } from "src/ts/tokenizer";
import { requestChatData } from "../request";
import { HypaProcesser } from "./hypamemory";
import { globalFetch } from "src/ts/globalApi.svelte";
import { runSummarizer } from "../transformers";
import { parseChatML } from "src/ts/parser.svelte";
export interface HypaV2Data {
chunks: {
text: string;
targetId: string;
chatRange: [number, number]; // Start and end indices of chats summarized
}[];
mainChunks: {
text: string;
targetId: string;
chatRange: [number, number]; // Start and end indices of chats summarized
}[];
}
async function summary(
stringlizedChat: string
): Promise<{ success: boolean; data: string }> {
const db = getDatabase();
console.log("Summarizing");
if (db.supaModelType === "distilbart") {
try {
const sum = await runSummarizer(stringlizedChat);
return { success: true, data: sum };
} catch (error) {
return {
success: false,
data: "SupaMemory: Summarizer: " + `${error}`,
};
}
}
const supaPrompt =
db.supaMemoryPrompt === ""
? "[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output.]\n"
: db.supaMemoryPrompt;
let result = "";
if (db.supaModelType !== "subModel") {
const promptbody = stringlizedChat + "\n\n" + supaPrompt + "\n\nOutput:";
const da = await globalFetch("https://api.openai.com/v1/completions", {
headers: {
"Content-Type": "application/json",
Authorization: "Bearer " + db.supaMemoryKey,
},
method: "POST",
body: {
model:
db.supaModelType === "curie"
? "text-curie-001"
: db.supaModelType === "instruct35"
? "gpt-3.5-turbo-instruct"
: "text-davinci-003",
prompt: promptbody,
max_tokens: 600,
temperature: 0,
},
});
console.log("Using openAI instruct 3.5 for SupaMemory");
try {
if (!da.ok) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da),
};
}
result = (await da.data)?.choices[0]?.text?.trim();
if (!result) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da),
};
}
return { success: true, data: result };
} catch (error) {
return {
success: false,
data: "SupaMemory: HTTP: " + error,
};
}
} else {
let parsedPrompt = parseChatML(
supaPrompt.replaceAll("{{slot}}", stringlizedChat)
);
const promptbody: OpenAIChat[] = parsedPrompt ?? [
{
role: "user",
content: stringlizedChat,
},
{
role: "system",
content: supaPrompt,
},
];
console.log(
"Using submodel: ",
db.subModel,
"for supaMemory model"
);
const da = await requestChatData(
{
formated: promptbody,
bias: {},
useStreaming: false,
noMultiGen: true,
},
"memory"
);
if (
da.type === "fail" ||
da.type === "streaming" ||
da.type === "multiline"
) {
return {
success: false,
data: "SupaMemory: HTTP: " + da.result,
};
}
result = da.result;
}
return { success: true, data: result };
}
function cleanInvalidChunks(
chats: OpenAIChat[],
data: HypaV2Data,
editedChatIndex?: number
): void {
// If editedChatIndex is provided, remove chunks and mainChunks that summarize chats from that index onwards
if (editedChatIndex !== undefined) {
data.mainChunks = data.mainChunks.filter(
(chunk) => chunk.chatRange[1] < editedChatIndex
);
data.chunks = data.chunks.filter(
(chunk) => chunk.chatRange[1] < editedChatIndex
);
} else {
// Confirmed that chat.memo is indeed unique uuid
const currentChatIds = new Set(chats.map((chat) => chat.memo));
// 존재하지 않는 챗의 요약본 삭제
data.mainChunks = data.mainChunks.filter((chunk) => {
const [startIdx, endIdx] = chunk.chatRange;
// Check if all chats in the range exist
for (let i = startIdx; i <= endIdx; i++) {
if (!currentChatIds.has(chats[i]?.memo)) {
console.log(`Removing this mainChunk(summary) due to chat context change: ${chunk}`);
return false; // false로 filtering
}
}
return true;
});
// 같은거, 근데 이건 쪼개진 chunk들에 대하여 수행
data.chunks = data.chunks.filter((chunk) => {
const [startIdx, endIdx] = chunk.chatRange;
// 생성된 chunks는 더이상 mainChunks와 연결되지 않음. 따라서 같은 작업을 진행해야 한다.
for (let i = startIdx; i <= endIdx; i++) {
if (!currentChatIds.has(chats[i]?.memo)) {
console.log(`Removing this chunk(split) due to chat context change: ${chunk}`);
return false;
}
}
return true;
});
}
}
export async function hypaMemoryV2(
chats: OpenAIChat[],
currentTokens: number,
maxContextTokens: number,
room: Chat,
char: character | groupChat,
tokenizer: ChatTokenizer,
editedChatIndex?: number
): Promise<{
currentTokens: number;
chats: OpenAIChat[];
error?: string;
memory?: HypaV2Data;
}> {
const db = getDatabase();
const data: HypaV2Data = room.hypaV2Data ?? { chunks: [], mainChunks: [] };
// Clean invalid chunks based on the edited chat index
cleanInvalidChunks(chats, data, editedChatIndex);
let allocatedTokens = db.hypaAllocatedTokens;
let chunkSize = db.hypaChunkSize;
currentTokens += allocatedTokens + 50;
let mainPrompt = "";
const lastTwoChats = chats.slice(-2);
// Error handling for infinite summarization attempts
let summarizationFailures = 0;
const maxSummarizationFailures = 3;
const summarizedIndices = new Set<number>();
// Token management loop
while (currentTokens >= maxContextTokens) {
let idx = 0;
let targetId = "";
const halfData: OpenAIChat[] = [];
let halfDataTokens = 0;
let startIdx = -1;
// Find the next batch of chats to summarize
while (
halfDataTokens < chunkSize &&
idx < chats.length - 2 // Ensure latest two chats are not added to summarization.
) {
if (!summarizedIndices.has(idx)) {
const chat = chats[idx];
if (startIdx === -1) startIdx = idx;
halfDataTokens += await tokenizer.tokenizeChat(chat);
halfData.push(chat);
targetId = chat.memo;
}
idx++;
}
const endIdx = idx - 1; // End index of the chats being summarized
// Avoid summarizing the last two chats
if (halfData.length < 3) break;
const stringlizedChat = halfData
.map((e) => `${e.role}: ${e.content}`)
.join("\n");
const summaryData = await summary(stringlizedChat);
if (!summaryData.success) {
summarizationFailures++;
if (summarizationFailures >= maxSummarizationFailures) {
return {
currentTokens: currentTokens,
chats: chats,
error:
"Summarization failed multiple times. Aborting to prevent infinite loop.",
};
}
continue;
}
summarizationFailures = 0; // Reset failure counter on success
const summaryDataToken = await tokenizer.tokenizeChat({
role: "system",
content: summaryData.data,
});
mainPrompt += `\n\n${summaryData.data}`;
currentTokens -= halfDataTokens;
allocatedTokens -= summaryDataToken;
data.mainChunks.unshift({
text: summaryData.data,
targetId: targetId,
chatRange: [startIdx, endIdx],
});
// Split the summary into chunks based on double line breaks
const splitted = summaryData.data
.split("\n\n")
.map((e) => e.trim())
.filter((e) => e.length > 0);
// Update chunks with the new summary
data.chunks.push(
...splitted.map((e) => ({
text: e,
targetId: targetId,
chatRange: [startIdx, endIdx] as [number, number],
}))
);
// Mark the chats as summarized
for (let i = startIdx; i <= endIdx; i++) {
summarizedIndices.add(i);
}
}
// Construct the mainPrompt from mainChunks
mainPrompt = "";
let mainPromptTokens = 0;
for (const chunk of data.mainChunks) {
const chunkTokens = await tokenizer.tokenizeChat({
role: "system",
content: chunk.text,
});
if (mainPromptTokens + chunkTokens > allocatedTokens / 2) break;
mainPrompt += `\n\n${chunk.text}`;
mainPromptTokens += chunkTokens;
}
// Fetch additional memory from chunks
const processor = new HypaProcesser(db.hypaModel);
processor.oaikey = db.supaMemoryKey;
// Add chunks to processor for similarity search
await processor.addText(
data.chunks
.filter((v) => v.text.trim().length > 0)
.map((v) => "search_document: " + v.text.trim())
);
let scoredResults: { [key: string]: number } = {};
for (let i = 0; i < 3; i++) {
const pop = chats[chats.length - i - 1];
if (!pop) break;
const searched = await processor.similaritySearchScored(
`search_query: ${pop.content}`
);
for (const result of searched) {
const score = result[1] / (i + 1);
scoredResults[result[0]] = (scoredResults[result[0]] || 0) + score;
}
}
const scoredArray = Object.entries(scoredResults).sort(
(a, b) => b[1] - a[1]
);
let chunkResultPrompts = "";
let chunkResultTokens = 0;
while (
allocatedTokens - mainPromptTokens - chunkResultTokens > 0 &&
scoredArray.length > 0
) {
const [text] = scoredArray.shift();
const tokenized = await tokenizer.tokenizeChat({
role: "system",
content: text.substring(14),
});
if (
tokenized >
allocatedTokens - mainPromptTokens - chunkResultTokens
)
break;
chunkResultPrompts += text.substring(14) + "\n\n";
chunkResultTokens += tokenized;
}
const fullResult = `<Past Events Summary>${mainPrompt}</Past Events Summary>\n<Past Events Details>${chunkResultPrompts}</Past Events Details>`;
// Filter out summarized chats
const unsummarizedChats = chats.filter(
(_, idx) => !summarizedIndices.has(idx)
);
// Insert the memory system prompt at the beginning
unsummarizedChats.unshift({
role: "system",
content: fullResult,
memo: "supaMemory",
});
// Add the last two chats back if they were removed
const lastTwoChatsSet = new Set(lastTwoChats.map((chat) => chat.memo));
console.log(lastTwoChatsSet) // Not so sure if chat.memo is unique id.
for (const chat of lastTwoChats) {
if (!unsummarizedChats.find((c) => c.memo === chat.memo)) {
unsummarizedChats.push(chat);
}
}
// Recalculate currentTokens
currentTokens = await tokenizer.tokenizeChats(unsummarizedChats);
console.log(
"Model being used: ",
db.hypaModel,
db.supaModelType,
"\nCurrent session tokens: ",
currentTokens,
"\nAll chats, including memory system prompt: ",
unsummarizedChats,
"\nMemory data, with all the chunks: ",
data
);
return {
currentTokens: currentTokens,
chats: unsummarizedChats,
memory: data,
};
}