Files
risuai/src/ts/process/embedding/transformers.ts
2024-01-05 23:51:37 +09:00

90 lines
3.2 KiB
TypeScript

import transformers, { AutoTokenizer, Pipeline, pipeline, type DataArray, type SummarizationOutput } from '@xenova/transformers';
transformers.env.localModelPath = "https://sv.risuai.xyz/transformers/"
type TransformersBodyType = {
max_new_tokens: number,
do_sample: boolean,
temperature: number,
top_p: number,
typical_p: number,
repetition_penalty: number,
encoder_repetition_penalty: number,
top_k: number,
min_length: number,
no_repeat_ngram_size: number,
num_beams: number,
penalty_alpha: number,
length_penalty: number,
early_stopping: boolean,
truncation_length: number,
ban_eos_token: boolean,
stopping_strings: number,
seed: number,
add_bos_token: boolean,
}
export const runTransformers = async (baseText:string, model:string,bodyTemplate:TransformersBodyType) => {
let text = baseText
let generator = await pipeline('text-generation', model);
let output = await generator(text) as transformers.TextGenerationOutput
const outputOne = output[0]
return outputOne
}
export const runSummarizer = async (text: string) => {
let classifier = await pipeline("summarization", "Xenova/distilbart-cnn-6-6")
const v = await classifier(text) as SummarizationOutput
return v[0].summary_text
}
let extractor:transformers.FeatureExtractionPipeline = null
export const runEmbedding = async (text: string):Promise<Float32Array> => {
if(!extractor){
extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
}
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/all-MiniLM-L6-v2');
const tokens = tokenizer.encode(text)
if (tokens.length > 256) {
let chunks:string[] = []
let chunk:number[] = []
for (let i = 0; i < tokens.length; i++) {
if (chunk.length > 256) {
chunks.push(tokenizer.decode(chunk))
chunk = []
}
chunk.push(tokens[i])
}
chunks.push(tokenizer.decode(chunk))
let results:Float32Array[] = []
for (let i = 0; i < chunks.length; i++) {
let result = await extractor(chunks[i], { pooling: 'mean', normalize: true });
const res:Float32Array = result?.data as Float32Array
if(res){
results.push(res)
}
}
//set result, as average of all chunks
let result:Float32Array = new Float32Array(results[0].length)
for (let i = 0; i < results.length; i++) {
for (let j = 0; j < result.length; j++) {
result[j] += results[i][j]
}
}
for (let i = 0; i < result.length; i++) {
result[i] = Math.round(result[i] / results.length)
}
return result
}
let result = await extractor(text, { pooling: 'mean', normalize: true });
return (result?.data as Float32Array) ?? null;
}
export const runTTS = async (text: string) => {
let speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin';
let synthesizer = await pipeline('text-to-speech', 'Xenova/speecht5_tts', { local_files_only: true });
let out = await synthesizer(text, { speaker_embeddings });
return out
}