- Add clear error messages when summarization is not possible - Fix message order issues caused by lastTwoChats logic - Skip [Start a new chat] and empty messages during summarization
669 lines
22 KiB
TypeScript
669 lines
22 KiB
TypeScript
import {
|
|
getDatabase,
|
|
type Chat,
|
|
type character,
|
|
type groupChat,
|
|
} from "src/ts/storage/database.svelte";
|
|
import type { OpenAIChat } from "../index.svelte";
|
|
import type { ChatTokenizer } from "src/ts/tokenizer";
|
|
import { requestChatData } from "../request";
|
|
import { HypaProcesser } from "./hypamemory";
|
|
import { globalFetch } from "src/ts/globalApi.svelte";
|
|
import { runSummarizer } from "../transformers";
|
|
import { parseChatML } from "src/ts/parser.svelte";
|
|
|
|
export interface HypaV2Data {
|
|
lastMainChunkID: number; // can be removed, but exists to more readability of the code.
|
|
mainChunks: { // summary itself
|
|
id: number;
|
|
text: string;
|
|
chatMemos: Set<string>; // UUIDs of summarized chats
|
|
lastChatMemo: string;
|
|
}[];
|
|
chunks: { // split mainChunks for retrieval or something. Although quite uncomfortable logic, so maybe I will delete it soon.
|
|
mainChunkID: number;
|
|
text:string;
|
|
}[];
|
|
}
|
|
|
|
// Reuse HypaV2Data and override only chatMemos in mainChunks
|
|
export interface SerializableHypaV2Data extends Omit<HypaV2Data, 'mainChunks'> {
|
|
mainChunks: {
|
|
id: number;
|
|
text: string;
|
|
chatMemos: string[]; // Override Set<string> with string[]
|
|
lastChatMemo: string;
|
|
}[];
|
|
}
|
|
|
|
async function summary(
|
|
stringlizedChat: string
|
|
): Promise<{ success: boolean; data: string }> {
|
|
const db = getDatabase();
|
|
console.log("Summarizing");
|
|
|
|
if (db.supaModelType === "distilbart") {
|
|
try {
|
|
const sum = await runSummarizer(stringlizedChat);
|
|
return { success: true, data: sum };
|
|
} catch (error) {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: Summarizer: " + `${error}`,
|
|
};
|
|
}
|
|
}
|
|
|
|
const supaPrompt =
|
|
db.supaMemoryPrompt === ""
|
|
? "[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output.]\n"
|
|
: db.supaMemoryPrompt;
|
|
let result = "";
|
|
|
|
if (db.supaModelType !== "subModel") {
|
|
const promptbody = stringlizedChat + "\n\n" + supaPrompt + "\n\nOutput:";
|
|
|
|
const da = await globalFetch("https://api.openai.com/v1/completions", {
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
Authorization: "Bearer " + db.supaMemoryKey,
|
|
},
|
|
method: "POST",
|
|
body: {
|
|
model:
|
|
db.supaModelType === "curie"
|
|
? "text-curie-001"
|
|
: db.supaModelType === "instruct35"
|
|
? "gpt-3.5-turbo-instruct"
|
|
: "text-davinci-003",
|
|
prompt: promptbody,
|
|
max_tokens: 600,
|
|
temperature: 0,
|
|
},
|
|
});
|
|
console.log("Using openAI instruct 3.5 for SupaMemory");
|
|
|
|
try {
|
|
if (!da.ok) {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: HTTP: " + JSON.stringify(da),
|
|
};
|
|
}
|
|
|
|
result = (await da.data)?.choices[0]?.text?.trim();
|
|
|
|
if (!result) {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: HTTP: " + JSON.stringify(da),
|
|
};
|
|
}
|
|
|
|
return { success: true, data: result };
|
|
} catch (error) {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: HTTP: " + error,
|
|
};
|
|
}
|
|
} else {
|
|
let parsedPrompt = parseChatML(
|
|
supaPrompt.replaceAll("{{slot}}", stringlizedChat)
|
|
);
|
|
|
|
const promptbody: OpenAIChat[] = (parsedPrompt ?? [
|
|
{
|
|
role: "user",
|
|
content: stringlizedChat,
|
|
},
|
|
{
|
|
role: "system",
|
|
content: supaPrompt
|
|
}
|
|
]).map(message => ({
|
|
...message,
|
|
memo: "supaPrompt"
|
|
}));
|
|
console.log("Using submodel: ", db.subModel, "for supaMemory model");
|
|
const da = await requestChatData({
|
|
formated: promptbody,
|
|
bias: {},
|
|
useStreaming: false,
|
|
noMultiGen: true
|
|
}, 'memory');
|
|
if (da.type === 'fail' || da.type === 'streaming' || da.type === 'multiline') {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: HTTP: " + da.result,
|
|
};
|
|
}
|
|
result = da.result;
|
|
}
|
|
return { success: true, data: result };
|
|
} // No, I am not going to touch any http API calls.
|
|
|
|
// Helper function start
|
|
export interface OldHypaV2Data {
|
|
chunks: {
|
|
text: string;
|
|
targetId: string;
|
|
}[];
|
|
mainChunks: {
|
|
text: string;
|
|
targetId: string;
|
|
}[];
|
|
}
|
|
|
|
function isSubset<T>(subset: Set<T>, superset: Set<T>): boolean {
|
|
for (const item of subset) {
|
|
if (!superset.has(item)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
function isOldHypaV2Data(obj:any): obj is OldHypaV2Data {
|
|
return (
|
|
typeof obj === 'object' &&
|
|
obj !== null &&
|
|
Array.isArray(obj.chunks) &&
|
|
Array.isArray(obj.mainChunks) &&
|
|
obj.chunks.every(chunk =>
|
|
typeof chunk === 'object' &&
|
|
chunk !== null &&
|
|
typeof chunk.text === 'string' &&
|
|
typeof chunk.targetId === 'string'
|
|
) &&
|
|
obj.mainChunks.every(mainChunk =>
|
|
typeof mainChunk === 'object' &&
|
|
mainChunk !== null &&
|
|
typeof mainChunk.text === 'string' &&
|
|
typeof mainChunk.targetId === 'string'
|
|
)
|
|
);
|
|
}
|
|
// Helper function end
|
|
|
|
function convertOldToNewHypaV2Data(oldData: OldHypaV2Data, chats: OpenAIChat[]): HypaV2Data {
|
|
const oldMainChunks = oldData.mainChunks.slice().reverse(); // Inversed order, old mainchunk is done by unshift instead of push
|
|
const oldChunks = oldData.chunks.slice();
|
|
const newData: HypaV2Data = {
|
|
lastMainChunkID: 0,
|
|
mainChunks: [],
|
|
chunks: [],
|
|
};
|
|
|
|
const mainChunkTargetIds = new Set<string>();
|
|
for (const mc of oldMainChunks) {
|
|
if (mc.targetId) {
|
|
mainChunkTargetIds.add(mc.targetId);
|
|
}
|
|
}
|
|
|
|
// map chat memo to index, efficiency issues
|
|
const chatMemoToIndex = new Map<string, number>();
|
|
for (const tid of mainChunkTargetIds) {
|
|
const idx = chats.findIndex(c => c.memo === tid);
|
|
if (idx !== -1) {
|
|
chatMemoToIndex.set(tid, idx);
|
|
} else {
|
|
chatMemoToIndex.set(tid, -1);
|
|
}
|
|
}
|
|
|
|
for (let i = 0; i < oldMainChunks.length; i++) {
|
|
const oldMainChunk = oldMainChunks[i];
|
|
const targetId = oldMainChunk.targetId;
|
|
const mainChunkText = oldMainChunk.text;
|
|
|
|
const previousMainChunk = i > 0 ? oldMainChunks[i - 1] : null;
|
|
const previousMainChunkTarget = previousMainChunk ? previousMainChunk.targetId : null;
|
|
|
|
let chatMemos = new Set<string>();
|
|
|
|
if (previousMainChunkTarget && targetId) {
|
|
const startIndex = chatMemoToIndex.get(previousMainChunkTarget) ?? -1;
|
|
const endIndex = chatMemoToIndex.get(targetId) ?? -1;
|
|
|
|
if (startIndex !== -1 && endIndex !== -1) {
|
|
const lowerIndex = Math.min(startIndex, endIndex);
|
|
const upperIndex = Math.max(startIndex, endIndex);
|
|
|
|
for (let j = lowerIndex; j <= upperIndex; j++) {
|
|
chatMemos.add(chats[j].memo);
|
|
}
|
|
} else {
|
|
// Can't identify the chats correctly, so discard this main chunk at all
|
|
continue; // Technically, if this is the case Previous HypaV2Data is bugged. Discussion opened for changing it to break;
|
|
}
|
|
} else {
|
|
// No previous chunk, so we gather all chats from index 0 up to the targetId's index
|
|
if (targetId) {
|
|
const targetIndex = chatMemoToIndex.get(targetId) ?? -1;
|
|
if (targetIndex !== -1) {
|
|
// Include all memos from 0 up to targetIndex
|
|
for (let j = 0; j <= targetIndex; j++) {
|
|
chatMemos.add(chats[j].memo);
|
|
}
|
|
} else {
|
|
continue; // Invalid MainChunk.
|
|
}
|
|
}
|
|
}
|
|
const newMainChunk = {
|
|
id: newData.lastMainChunkID,
|
|
text: mainChunkText,
|
|
chatMemos: chatMemos,
|
|
lastChatMemo: targetId,
|
|
}
|
|
newData.mainChunks.push(newMainChunk);
|
|
newData.lastMainChunkID++;
|
|
// Adding chunks accordingly, matching MainChunkID by leveraging same targetId
|
|
const matchingOldChunks = oldChunks.filter((oldChunk) => oldChunk.targetId === targetId);
|
|
for (const oldChunk of matchingOldChunks) {
|
|
newData.chunks.push({
|
|
mainChunkID: newMainChunk.id,
|
|
text: oldChunk.text,
|
|
});
|
|
}
|
|
}
|
|
|
|
return newData; // updated HypaV2Data
|
|
}
|
|
|
|
function cleanInvalidChunks(
|
|
chats: OpenAIChat[],
|
|
data: HypaV2Data,
|
|
): void {
|
|
const currentChatMemos = new Set(chats.map((chat) => chat.memo));
|
|
|
|
// mainChunks filtering
|
|
data.mainChunks = data.mainChunks.filter((mainChunk) => {
|
|
return isSubset(mainChunk.chatMemos, currentChatMemos);
|
|
});
|
|
|
|
// chunk filtering based on mainChunk's id
|
|
const validMainChunkIds = new Set(data.mainChunks.map((mainChunk) => mainChunk.id));
|
|
data.chunks = data.chunks.filter((chunk) =>
|
|
validMainChunkIds.has(chunk.mainChunkID)
|
|
);
|
|
// Update lastMainChunkID
|
|
if (data.mainChunks.length > 0) {
|
|
data.lastMainChunkID = data.mainChunks[data.mainChunks.length - 1].id;
|
|
} else {
|
|
data.lastMainChunkID = 0;
|
|
}
|
|
}
|
|
|
|
export async function regenerateSummary(
|
|
chats: OpenAIChat[],
|
|
data: HypaV2Data,
|
|
mainChunkIndex: number
|
|
) : Promise<void> {
|
|
const targetMainChunk = data.mainChunks[mainChunkIndex];
|
|
|
|
}
|
|
|
|
function toSerializableHypaV2Data(data: HypaV2Data): SerializableHypaV2Data {
|
|
return {
|
|
...data,
|
|
mainChunks: data.mainChunks.map(mainChunk => ({
|
|
...mainChunk,
|
|
chatMemos: Array.from(mainChunk.chatMemos),
|
|
})),
|
|
};
|
|
}
|
|
|
|
function toHypaV2Data(data: SerializableHypaV2Data): HypaV2Data {
|
|
// Handle corrupted data due to invalid json serialization
|
|
data.mainChunks.forEach((mainChunk) => {
|
|
if (!Array.isArray(mainChunk.chatMemos)) {
|
|
mainChunk.chatMemos = [];
|
|
}
|
|
});
|
|
|
|
return {
|
|
...data,
|
|
mainChunks: data.mainChunks.map(mainChunk => ({
|
|
...mainChunk,
|
|
chatMemos: new Set(mainChunk.chatMemos),
|
|
})),
|
|
};
|
|
}
|
|
|
|
export async function hypaMemoryV2(
|
|
chats: OpenAIChat[],
|
|
currentTokens: number,
|
|
maxContextTokens: number,
|
|
room: Chat,
|
|
char: character | groupChat,
|
|
tokenizer: ChatTokenizer
|
|
): Promise<{
|
|
currentTokens: number;
|
|
chats: OpenAIChat[];
|
|
error?: string;
|
|
memory?: SerializableHypaV2Data;
|
|
}> {
|
|
const db = getDatabase();
|
|
let data: HypaV2Data = {
|
|
lastMainChunkID: 0,
|
|
chunks: [],
|
|
mainChunks: [],
|
|
};
|
|
|
|
// Subtract maxResponse from currentTokens to fix the token calculation issue.
|
|
// This is not a fundamental solution but rather a temporary fix.
|
|
// It is designed to minimize impact on other code.
|
|
currentTokens -= db.maxResponse;
|
|
|
|
if (room.hypaV2Data) {
|
|
if (isOldHypaV2Data(room.hypaV2Data)) {
|
|
console.log("Old HypaV2 data detected. Converting to new format...");
|
|
data = convertOldToNewHypaV2Data(room.hypaV2Data, chats);
|
|
} else {
|
|
data = toHypaV2Data(room.hypaV2Data);
|
|
}
|
|
}
|
|
|
|
// Clean invalid HypaV2 data
|
|
cleanInvalidChunks(chats, data);
|
|
|
|
let allocatedTokens = db.hypaAllocatedTokens;
|
|
let chunkSize = db.hypaChunkSize;
|
|
currentTokens += allocatedTokens; // WARNING: VIRTUAL VALUE. This token is NOT real. This is a placeholder appended to calculate the maximum amount of HypaV2 memory retrieved data.
|
|
let mainPrompt = "";
|
|
const lastTwoChats = chats.slice(-2);
|
|
// Error handling for failed summarization
|
|
let summarizationFailures = 0;
|
|
const maxSummarizationFailures = 3;
|
|
|
|
// Find the index to start summarizing from
|
|
let idx = 0;
|
|
if (data.mainChunks.length > 0) {
|
|
const lastMainChunk = data.mainChunks[data.mainChunks.length - 1];
|
|
const lastChatMemo = lastMainChunk.lastChatMemo;
|
|
const lastChatIndex = chats.findIndex(chat => chat.memo === lastChatMemo);
|
|
if (lastChatIndex !== -1) {
|
|
idx = lastChatIndex + 1;
|
|
|
|
// Subtract tokens of summarized chats
|
|
const summarizedChats = chats.slice(0, lastChatIndex + 1);
|
|
for (const chat of summarizedChats) {
|
|
currentTokens -= await tokenizer.tokenizeChat(chat);
|
|
}
|
|
}
|
|
}
|
|
// Starting chat index of new mainChunk to be generated
|
|
|
|
// Token management loop (If current token usage exceeds allowed amount)
|
|
while (currentTokens > maxContextTokens) {
|
|
const halfData: OpenAIChat[] = [];
|
|
let halfDataTokens = 0;
|
|
|
|
const startIdx = idx;
|
|
|
|
console.log(
|
|
"[HypaV2] Starting summarization iteration:",
|
|
"\nCurrent Tokens (before):", currentTokens,
|
|
"\nMax Context Tokens:", maxContextTokens,
|
|
"\nStartIdx:", startIdx,
|
|
"\nchunkSize:", chunkSize
|
|
);
|
|
|
|
// Accumulate chats to summarize
|
|
while (
|
|
halfDataTokens < chunkSize &&
|
|
(idx < chats.length - 4) // keep the last two chats from summarizing(else, the roles will be fucked up)
|
|
) {
|
|
const chat = chats[idx];
|
|
const chatTokens = await tokenizer.tokenizeChat(chat);
|
|
|
|
console.log(
|
|
"[HypaV2] Evaluating chat for summarization:",
|
|
"\nIndex:", idx,
|
|
"\nRole:", chat.role,
|
|
"\nContent:", chat.content,
|
|
"\nchatTokens:", chatTokens,
|
|
"\nhalfDataTokens so far:", halfDataTokens,
|
|
"\nWould adding this exceed chunkSize?", (halfDataTokens + chatTokens > chunkSize)
|
|
);
|
|
|
|
// Skip index 0 ([Start a new chat])
|
|
if (idx === 0) {
|
|
console.log("[HypaV2] Skipping index 0");
|
|
idx++;
|
|
continue;
|
|
}
|
|
|
|
// Skip if the content of this chat is empty
|
|
if (!chat.content.trim()) {
|
|
console.log(`[HypaV2] Skipping empty content of index ${idx}`);
|
|
idx++;
|
|
continue;
|
|
}
|
|
|
|
// Check if adding this chat would exceed our chunkSize limit
|
|
if (halfDataTokens + chatTokens > chunkSize) {
|
|
// Can't add this chat without going over chunkSize
|
|
// Break out, and summarize what we have so far.
|
|
break;
|
|
}
|
|
|
|
// Add this chat to the halfData batch
|
|
halfData.push(chat);
|
|
halfDataTokens += chatTokens;
|
|
idx++;
|
|
}
|
|
|
|
const endIdx = idx - 1;
|
|
console.log(
|
|
"[HypaV2] Summarization batch chosen with this:",
|
|
"\nStartIdx:", startIdx,
|
|
"\nEndIdx:", endIdx,
|
|
"\nNumber of chats in halfData:", halfData.length,
|
|
"\nTotal tokens in halfData:", halfDataTokens,
|
|
"\nChats selected:", halfData.map(h => ({role: h.role, content: h.content}))
|
|
);
|
|
|
|
// If no chats were added, break to avoid infinite loop
|
|
if (halfData.length === 0) {
|
|
// Case 1: Can't summarize the last 4 chats
|
|
if (idx >= chats.length - 4) {
|
|
return {
|
|
currentTokens: currentTokens,
|
|
chats: chats,
|
|
error: `[HypaV2] Input tokens (${currentTokens}) exceeds max context size (${maxContextTokens}), but can't summarize last 4 messages. Please increase max context size to at least ${currentTokens}.`
|
|
};
|
|
}
|
|
|
|
// Case 2: Chat too large for chunk size
|
|
const chatTokens = await tokenizer.tokenizeChat(chats[idx]);
|
|
return {
|
|
currentTokens: currentTokens,
|
|
chats: chats,
|
|
error: `[HypaV2] Message tokens (${chatTokens}) exceeds chunk size (${chunkSize}). Please increase chunk size to at least ${chatTokens}.`
|
|
};
|
|
}
|
|
|
|
const stringlizedChat = halfData
|
|
.map((e) => `${e.role}: ${e.content}`)
|
|
.join("\n");
|
|
|
|
// Summarize the accumulated chunk
|
|
const summaryData = await summary(stringlizedChat);
|
|
|
|
if (!summaryData.success) {
|
|
console.log("Summarization failed:", summaryData.data);
|
|
summarizationFailures++;
|
|
if (summarizationFailures >= maxSummarizationFailures) {
|
|
console.error("[HypaV2] Summarization failed multiple times. Aborting...");
|
|
return {
|
|
currentTokens: currentTokens,
|
|
chats: chats,
|
|
error: "[HypaV2] Summarization failed multiple times. Aborting to prevent infinite loop.",
|
|
};
|
|
}
|
|
// If summarization fails, try again in next iteration
|
|
continue;
|
|
}
|
|
|
|
summarizationFailures = 0; // Reset on success
|
|
|
|
const summaryDataToken = await tokenizer.tokenizeChat({
|
|
role: "system",
|
|
content: summaryData.data,
|
|
});
|
|
|
|
console.log(
|
|
"[HypaV2] Summarization success:",
|
|
"\nSummary Data:", summaryData.data,
|
|
"\nSummary Token Count:", summaryDataToken
|
|
);
|
|
|
|
// Update lastMainChunkID and create a new mainChunk
|
|
data.lastMainChunkID++;
|
|
const newMainChunkId = data.lastMainChunkID;
|
|
|
|
const chatMemos = new Set(halfData.map((chat) => chat.memo));
|
|
const lastChatMemo = halfData[halfData.length - 1].memo;
|
|
|
|
data.mainChunks.push({
|
|
id: newMainChunkId,
|
|
text: summaryData.data,
|
|
chatMemos: chatMemos,
|
|
lastChatMemo: lastChatMemo,
|
|
});
|
|
|
|
// Split the summary into chunks
|
|
const splitted = summaryData.data
|
|
.split("\n\n")
|
|
.map((e) => e.trim())
|
|
.filter((e) => e.length > 0);
|
|
|
|
data.chunks.push(
|
|
...splitted.map((e) => ({
|
|
mainChunkID: newMainChunkId,
|
|
text: e,
|
|
}))
|
|
);
|
|
|
|
console.log(
|
|
"[HypaV2] Chunks added:",
|
|
splitted,
|
|
"\nUpdated mainChunks count:", data.mainChunks.length,
|
|
"\nUpdated chunks count:", data.chunks.length
|
|
);
|
|
|
|
currentTokens -= halfDataTokens;
|
|
console.log("[HypaV2] tokens after summarization deduction:", currentTokens);
|
|
}
|
|
|
|
// Construct the mainPrompt from mainChunks
|
|
mainPrompt = "";
|
|
let mainPromptTokens = 0;
|
|
for (const chunk of data.mainChunks) {
|
|
const chunkTokens = await tokenizer.tokenizeChat({
|
|
role: "system",
|
|
content: chunk.text,
|
|
});
|
|
if (mainPromptTokens + chunkTokens > allocatedTokens / 2) break;
|
|
mainPrompt += `\n\n${chunk.text}`;
|
|
mainPromptTokens += chunkTokens;
|
|
}
|
|
|
|
// Fetch additional memory from chunks
|
|
const processor = new HypaProcesser(db.hypaModel);
|
|
processor.oaikey = db.supaMemoryKey;
|
|
|
|
const searchDocumentPrefix = "search_document: ";
|
|
const prefixLength = searchDocumentPrefix.length;
|
|
|
|
// Add chunks to processor for similarity search
|
|
await processor.addText(
|
|
data.chunks
|
|
.filter((v) => v.text.trim().length > 0)
|
|
.map((v) => searchDocumentPrefix + v.text.trim()) // sometimes this should not be used at all. RisuAI does not support embedding model that this is meaningful, isn't it?
|
|
);
|
|
|
|
let scoredResults: { [key: string]: number } = {};
|
|
for (let i = 0; i < 3; i++) { // Should parameterize this, fixed length 3 is a magic number without explanation
|
|
const pop = chats[chats.length - i - 1];
|
|
if (!pop) break;
|
|
const searched = await processor.similaritySearchScored(
|
|
`search_query: ${pop.content}`
|
|
);
|
|
for (const result of searched) {
|
|
const score = result[1] / (i + 1);
|
|
scoredResults[result[0]] = (scoredResults[result[0]] || 0) + score;
|
|
}
|
|
}
|
|
|
|
const scoredArray = Object.entries(scoredResults).sort(
|
|
(a, b) => b[1] - a[1]
|
|
);
|
|
let chunkResultPrompts = "";
|
|
let chunkResultTokens = 0;
|
|
while (
|
|
allocatedTokens - mainPromptTokens - chunkResultTokens > 0 &&
|
|
scoredArray.length > 0
|
|
) {
|
|
const [text] = scoredArray.shift();
|
|
const content = text.substring(prefixLength);
|
|
const tokenized = await tokenizer.tokenizeChat({
|
|
role: "system",
|
|
content: content,
|
|
});
|
|
if (
|
|
tokenized >
|
|
allocatedTokens - mainPromptTokens - chunkResultTokens
|
|
)
|
|
break;
|
|
chunkResultPrompts += content + "\n\n";
|
|
chunkResultTokens += tokenized;
|
|
}
|
|
|
|
const fullResult = `<Past Events Summary>${mainPrompt}</Past Events Summary>\n<Past Events Details>${chunkResultPrompts}</Past Events Details>`;
|
|
const fullResultTokens = await tokenizer.tokenizeChat({
|
|
role: "system",
|
|
content: fullResult,
|
|
});
|
|
currentTokens += fullResultTokens;
|
|
|
|
// Filter out summarized chats and prepend the memory prompt
|
|
const unsummarizedChats: OpenAIChat[] = [
|
|
{
|
|
role: "system",
|
|
content: fullResult,
|
|
memo: "supaMemory",
|
|
},
|
|
...chats.slice(idx) // Use the idx to slice out the summarized chats
|
|
];
|
|
|
|
// Remove this later, as this is already done by the index
|
|
for (const chat of lastTwoChats) {
|
|
if (!unsummarizedChats.find((c) => c.memo === chat.memo)) {
|
|
unsummarizedChats.push(chat);
|
|
}
|
|
}
|
|
|
|
currentTokens -= allocatedTokens; // Virtually added memory tokens got removed. Bad way, but had no choice.
|
|
|
|
console.log(
|
|
"[HypaV2] Model being used: ",
|
|
db.hypaModel,
|
|
db.supaModelType,
|
|
"\nCurrent session tokens: ",
|
|
currentTokens,
|
|
"\nAll chats, including memory system prompt: ",
|
|
unsummarizedChats,
|
|
"\nMemory data, with all the chunks: ",
|
|
data
|
|
);
|
|
|
|
return {
|
|
currentTokens: currentTokens,
|
|
chats: unsummarizedChats,
|
|
memory: toSerializableHypaV2Data(data),
|
|
};
|
|
} |