Files
risuai/src/ts/process/memory/hypamemory.ts
2023-06-29 09:19:01 +09:00

141 lines
3.6 KiB
TypeScript

import localforage from "localforage";
import { similarity } from "ml-distance";
import { globalFetch } from "src/ts/storage/globalApi";
export class HypaProcesser{
oaikey:string
vectors:memoryVector[]
forage:LocalForage
constructor(){
this.forage = localforage.createInstance({
name: "hypaVector"
})
this.vectors = []
}
async embedDocuments(texts: string[]): Promise<number[][]> {
const subPrompts = chunkArray(texts,512);
const embeddings: number[][] = [];
for (let i = 0; i < subPrompts.length; i += 1) {
const input = subPrompts[i];
const data = await this.getEmbeds(input)
embeddings.push(...data);
}
return embeddings;
}
async getEmbeds(input:string[]|string) {
const gf = await globalFetch("https://api.openai.com/v1/embeddings", {
headers: {
"Authorization": "Bearer " + this.oaikey
},
body: {
"input": input,
"model": "text-embedding-ada-002"
}
})
const data = gf.data
if(!gf.ok){
throw gf.data
}
const result:number[][] = []
for(let i=0;i<data.data.length;i++){
result.push(data.data[i].embedding)
}
return result
}
async addText(texts:string[]) {
for(let i=0;i<texts.length;i++){
const itm:memoryVector = await this.forage.getItem(texts[i])
if(itm){
itm.alreadySaved = true
this.vectors.push(itm)
}
}
texts = texts.filter((v) => {
for(let i=0;i<this.vectors.length;i++){
if(this.vectors[i].content === v){
return false
}
}
return true
})
if(texts.length === 0){
return
}
const vectors = await this.embedDocuments(texts)
const memoryVectors:memoryVector[] = vectors.map((embedding, idx) => ({
content: texts[idx],
embedding
}));
for(let i=0;i<memoryVectors.length;i++){
const vec = memoryVectors[i]
if(!vec.alreadySaved){
await this.forage.setItem(texts[i], vec)
}
}
this.vectors = memoryVectors.concat(this.vectors)
}
async similaritySearch(query: string) {
const results = await this.similaritySearchVectorWithScore((await this.getEmbeds(query))[0],);
console.log(results)
return results.map((result) => result[0]);
}
async similaritySearchVectorWithScore(
query: number[],
): Promise<[string, number][]> {
const memoryVectors = this.vectors
const searches = memoryVectors
.map((vector, index) => ({
similarity: similarity.cosine(query, vector.embedding),
index,
}))
.sort((a, b) => (a.similarity > b.similarity ? -1 : 0))
const result: [string, number][] = searches.map((search) => [
memoryVectors[search.index].content,
search.similarity,
]);
return result;
}
}
type memoryVector = {
embedding:number[]
content:string,
alreadySaved?:boolean
}
const chunkArray = <T>(arr: T[], chunkSize: number) =>
arr.reduce((chunks, elem, index) => {
const chunkIndex = Math.floor(index / chunkSize);
const chunk = chunks[chunkIndex] || [];
chunks[chunkIndex] = chunk.concat([elem]);
return chunks;
}, [] as T[][]);