Files
risuai/src/ts/process/memory/hypav2.ts
HyperBlaze b283b4a126 fix: index issues
forgot to commit on my pc, so doing it on laptop
2024-12-05 12:21:58 -08:00

405 lines
13 KiB
TypeScript

import {
getDatabase,
type Chat,
type character,
type groupChat,
} from "src/ts/storage/database.svelte";
import type { OpenAIChat } from "../index.svelte";
import type { ChatTokenizer } from "src/ts/tokenizer";
import { requestChatData } from "../request";
import { HypaProcesser } from "./hypamemory";
import { globalFetch } from "src/ts/globalApi.svelte";
import { runSummarizer } from "../transformers";
import { parseChatML } from "src/ts/parser.svelte";
export interface HypaV2Data {
lastMainChunkId: number; // can be removed, but exists to more readability of the code.
mainChunks: { // summary itself
id: number;
text: string;
chatMemos: Set<string>; // UUIDs of summarized chats
lastChatMemo: string;
}[];
chunks: { // split mainChunks for retrieval or something. Although quite uncomfortable logic, so maybe I will delete it soon or later.
mainChunkID: number;
text:string;
}[];
}
async function summary(
stringlizedChat: string
): Promise<{ success: boolean; data: string }> {
const db = getDatabase();
console.log("Summarizing");
if (db.supaModelType === "distilbart") {
try {
const sum = await runSummarizer(stringlizedChat);
return { success: true, data: sum };
} catch (error) {
return {
success: false,
data: "SupaMemory: Summarizer: " + `${error}`,
};
}
}
const supaPrompt =
db.supaMemoryPrompt === ""
? "[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output.]\n"
: db.supaMemoryPrompt;
let result = "";
if (db.supaModelType !== "subModel") {
const promptbody = stringlizedChat + "\n\n" + supaPrompt + "\n\nOutput:";
const da = await globalFetch("https://api.openai.com/v1/completions", {
headers: {
"Content-Type": "application/json",
Authorization: "Bearer " + db.supaMemoryKey,
},
method: "POST",
body: {
model:
db.supaModelType === "curie"
? "text-curie-001"
: db.supaModelType === "instruct35"
? "gpt-3.5-turbo-instruct"
: "text-davinci-003",
prompt: promptbody,
max_tokens: 600,
temperature: 0,
},
});
console.log("Using openAI instruct 3.5 for SupaMemory");
try {
if (!da.ok) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da),
};
}
result = (await da.data)?.choices[0]?.text?.trim();
if (!result) {
return {
success: false,
data: "SupaMemory: HTTP: " + JSON.stringify(da),
};
}
return { success: true, data: result };
} catch (error) {
return {
success: false,
data: "SupaMemory: HTTP: " + error,
};
}
} else {
let parsedPrompt = parseChatML(
supaPrompt.replaceAll("{{slot}}", stringlizedChat)
);
const promptbody: OpenAIChat[] = parsedPrompt ?? [
{
role: "user",
content: stringlizedChat,
},
{
role: "system",
content: supaPrompt,
},
];
console.log(
"Using submodel: ",
db.subModel,
"for supaMemory model"
);
const da = await requestChatData(
{
formated: promptbody,
bias: {},
useStreaming: false,
noMultiGen: true,
},
"memory"
);
if (
da.type === "fail" ||
da.type === "streaming" ||
da.type === "multiline"
) {
return {
success: false,
data: "SupaMemory: HTTP: " + da.result,
};
}
result = da.result;
}
return { success: true, data: result };
} // No, I am not going to touch any http API calls.
function isSubset<T>(subset: Set<T>, superset: Set<T>): boolean { // simple helper function. Check if subset IS a subset of superset given.
for (const item of subset) {
if (!superset.has(item)) {
return false;
}
}
return true;
}
function cleanInvalidChunks(
chats: OpenAIChat[],
data: HypaV2Data,
): void {
const currentChatMemos = new Set(chats.map((chat) => chat.memo)); // if chunk's memo set is not subset of this, the chunk's content -> delete
// mainChunks filtering
data.mainChunks = data.mainChunks.filter((mainChunk) => {
return isSubset(mainChunk.chatMemos, currentChatMemos);
});
// chunk filtering based on mainChunk's id
const validMainChunkIds = new Set(data.mainChunks.map((mainChunk) => mainChunk.id));
data.chunks = data.chunks.filter((chunk) =>
validMainChunkIds.has(chunk.mainChunkID)
);
// Update lastMainChunkId
if (data.mainChunks.length > 0) {
data.lastMainChunkId = data.mainChunks[data.mainChunks.length - 1].id;
} else {
data.lastMainChunkId = 0;
}
}
export async function regenerateSummary(
chats: OpenAIChat[],
data: HypaV2Data,
mainChunkIndex: number
) : Promise<void> {
const targetMainChunk = data.mainChunks[mainChunkIndex];
}
export async function hypaMemoryV2(
chats: OpenAIChat[],
currentTokens: number,
maxContextTokens: number,
room: Chat,
char: character | groupChat,
tokenizer: ChatTokenizer
): Promise<{
currentTokens: number;
chats: OpenAIChat[];
error?: string;
memory?: HypaV2Data;
}> {
const db = getDatabase();
const data: HypaV2Data = room.hypaV2Data ?? {
lastMainChunkId: 0,
chunks: [],
mainChunks: []
};
// Clean invalid HypaV2 data
cleanInvalidChunks(chats, data);
let allocatedTokens = db.hypaAllocatedTokens;
let chunkSize = db.hypaChunkSize;
currentTokens += allocatedTokens + chats.length * 4; // ChatML token counting from official openai documentation
let mainPrompt = "";
const lastTwoChats = chats.slice(-2);
let summarizationFailures = 0;
const maxSummarizationFailures = 3;
// Find the index to start summarizing from
let idx = 0;
if (data.mainChunks.length > 0) {
const lastMainChunk = data.mainChunks[data.mainChunks.length - 1];
const lastChatMemo = lastMainChunk.lastChatMemo;
const lastChatIndex = chats.findIndex(chat => chat.memo === lastChatMemo);
if (lastChatIndex !== -1) {
idx = lastChatIndex + 1;
}
}
// Starting chat index of new mainChunk to be generated
// Token management loop(where using of )
while (currentTokens >= maxContextTokens) {
const halfData: OpenAIChat[] = [];
let halfDataTokens = 0;
// Accumulate chats to summarize
while (
halfDataTokens < chunkSize &&
idx < chats.length - 2 // Ensure latest two chats are not added to summarization.
) {
const chat = chats[idx];
idx++;
halfDataTokens += await tokenizer.tokenizeChat(chat);
halfData.push(chat);
}
if (halfData.length === 0) break;
const stringlizedChat = halfData
.map((e) => `${e.role}: ${e.content}`)
.join("\n");
const summaryData = await summary(stringlizedChat);
if (!summaryData.success) {
summarizationFailures++;
if (summarizationFailures >= maxSummarizationFailures) {
return {
currentTokens: currentTokens,
chats: chats,
error:
"Summarization failed multiple times. Aborting to prevent infinite loop.",
};
}
continue;
}
summarizationFailures = 0; // Reset failure counter on success
const summaryDataToken = await tokenizer.tokenizeChat({
role: "system",
content: summaryData.data,
});
mainPrompt += `\n\n${summaryData.data}`;
currentTokens -= halfDataTokens;
allocatedTokens -= summaryDataToken;
// Update lastMainChunkId and create a new mainChunk
data.lastMainChunkId++;
const newMainChunkId = data.lastMainChunkId;
const chatMemos = new Set(halfData.map((chat) => chat.memo));
const lastChatMemo = halfData[halfData.length - 1].memo;
data.mainChunks.push({
id: newMainChunkId,
text: summaryData.data,
chatMemos: chatMemos,
lastChatMemo: lastChatMemo,
});
// Split the summary into chunks
const splitted = summaryData.data
.split("\n\n")
.map((e) => e.trim())
.filter((e) => e.length > 0);
// Update chunks with the new summary
data.chunks.push(
...splitted.map((e) => ({
mainChunkID: newMainChunkId,
text: e,
}))
);
}
// Construct the mainPrompt from mainChunks
mainPrompt = "";
let mainPromptTokens = 0;
for (const chunk of data.mainChunks) {
const chunkTokens = await tokenizer.tokenizeChat({
role: "system",
content: chunk.text,
});
if (mainPromptTokens + chunkTokens > allocatedTokens / 2) break;
mainPrompt += `\n\n${chunk.text}`;
mainPromptTokens += chunkTokens;
}
// Fetch additional memory from chunks
const processor = new HypaProcesser(db.hypaModel);
processor.oaikey = db.supaMemoryKey;
const searchDocumentPrefix = "search_document: ";
const prefixLength = searchDocumentPrefix.length;
// Add chunks to processor for similarity search
await processor.addText(
data.chunks
.filter((v) => v.text.trim().length > 0)
.map((v) => searchDocumentPrefix + v.text.trim()) // sometimes this should not be used at all. RisuAI does not support embedding model that this is meaningful, isn't it?
);
let scoredResults: { [key: string]: number } = {};
for (let i = 0; i < 3; i++) { // Should parameterize this, fixed length 3 is a magic number without explanation
const pop = chats[chats.length - i - 1];
if (!pop) break;
const searched = await processor.similaritySearchScored(
`search_query: ${pop.content}`
);
for (const result of searched) {
const score = result[1] / (i + 1);
scoredResults[result[0]] = (scoredResults[result[0]] || 0) + score;
}
}
const scoredArray = Object.entries(scoredResults).sort(
(a, b) => b[1] - a[1]
);
let chunkResultPrompts = "";
let chunkResultTokens = 0;
while (
allocatedTokens - mainPromptTokens - chunkResultTokens > 0 &&
scoredArray.length > 0
) {
const [text] = scoredArray.shift();
const content = text.substring(prefixLength);
const tokenized = await tokenizer.tokenizeChat({
role: "system",
content: content,
});
if (
tokenized >
allocatedTokens - mainPromptTokens - chunkResultTokens
)
break;
chunkResultPrompts += content + "\n\n";
chunkResultTokens += tokenized;
}
const fullResult = `<Past Events Summary>${mainPrompt}</Past Events Summary>\n<Past Events Details>${chunkResultPrompts}</Past Events Details>`;
// Filter out summarized chats
const unsummarizedChats = chats.slice(idx);
// Insert the memory system prompt at the beginning
unsummarizedChats.unshift({
role: "system",
content: fullResult,
memo: "supaMemory",
});
for (const chat of lastTwoChats) {
if (!unsummarizedChats.find((c) => c.memo === chat.memo)) {
unsummarizedChats.push(chat);
}
}
// Recalculate currentTokens
currentTokens = await tokenizer.tokenizeChats(unsummarizedChats);
console.log(
"Model being used: ",
db.hypaModel,
db.supaModelType,
"\nCurrent session tokens: ",
currentTokens,
"\nAll chats, including memory system prompt: ",
unsummarizedChats,
"\nMemory data, with all the chunks: ",
data
);
return {
currentTokens: currentTokens,
chats: unsummarizedChats,
memory: data,
};
}