Files
risuai/src/ts/process/memory/hypamemory.ts

191 lines
5.7 KiB
TypeScript

import localforage from "localforage";
import { globalFetch } from "src/ts/storage/globalApi";
import { runEmbedding } from "../transformers";
import { alertError } from "src/ts/alert";
import { appendLastPath } from "src/ts/util";
export class HypaProcesser{
oaikey:string
vectors:memoryVector[]
forage:LocalForage
model:'ada'|'MiniLM'|'nomic'|'custom'
customEmbeddingUrl:string
constructor(model:'ada'|'MiniLM'|'nomic'|'custom',customEmbeddingUrl?:string){
this.forage = localforage.createInstance({
name: "hypaVector"
})
this.vectors = []
this.model = model
this.customEmbeddingUrl = customEmbeddingUrl
}
async embedDocuments(texts: string[]): Promise<VectorArray[]> {
const subPrompts = chunkArray(texts,50);
const embeddings: VectorArray[] = [];
for (let i = 0; i < subPrompts.length; i += 1) {
const input = subPrompts[i];
const data = await this.getEmbeds(input)
embeddings.push(...data);
}
return embeddings;
}
async getEmbeds(input:string[]|string):Promise<VectorArray[]> {
if(this.model === 'MiniLM' || this.model === 'nomic'){
const inputs:string[] = Array.isArray(input) ? input : [input]
let results:Float32Array[] = await runEmbedding(inputs, this.model === 'nomic' ? 'nomic-ai/nomic-embed-text-v1.5' : 'Xenova/all-MiniLM-L6-v2')
return results
}
let gf = null;
if(this.model === 'custom'){
if(!this.customEmbeddingUrl){
throw new Error('Custom model requires a Custom Server URL')
}
const {customEmbeddingUrl} = this
const replaceUrl = customEmbeddingUrl.endsWith('/embeddings')?customEmbeddingUrl:appendLastPath(customEmbeddingUrl,'embeddings')
gf = await globalFetch(replaceUrl.toString(), {
body:{
"input": input
},
})
}
if(this.model === 'ada'){
gf = await globalFetch("https://api.openai.com/v1/embeddings", {
headers: {
"Authorization": "Bearer " + this.oaikey
},
body: {
"input": input,
"model": "text-embedding-ada-002"
}
})
}
const data = gf.data
if(!gf.ok){
throw gf.data
}
const result:number[][] = []
for(let i=0;i<data.data.length;i++){
result.push(data.data[i].embedding)
}
return result
}
async testText(text:string){
const forageResult:number[] = await this.forage.getItem(text)
if(forageResult){
return forageResult
}
const vec = (await this.embedDocuments([text]))[0]
await this.forage.setItem(text, vec)
return vec
}
async addText(texts:string[]) {
for(let i=0;i<texts.length;i++){
const itm:memoryVector = await this.forage.getItem(texts[i] + '|' + this.model)
if(itm){
itm.alreadySaved = true
this.vectors.push(itm)
}
}
texts = texts.filter((v) => {
for(let i=0;i<this.vectors.length;i++){
if(this.vectors[i].content === v){
return false
}
}
return true
})
if(texts.length === 0){
return
}
const vectors = await this.embedDocuments(texts)
const memoryVectors:memoryVector[] = vectors.map((embedding, idx) => ({
content: texts[idx],
embedding
}));
for(let i=0;i<memoryVectors.length;i++){
const vec = memoryVectors[i]
if(!vec.alreadySaved){
await this.forage.setItem(texts[i] + '|' + this.model, vec)
}
}
this.vectors = memoryVectors.concat(this.vectors)
}
async similaritySearch(query: string) {
const results = await this.similaritySearchVectorWithScore((await this.getEmbeds(query))[0],);
return results.map((result) => result[0]);
}
async similaritySearchScored(query: string) {
const results = await this.similaritySearchVectorWithScore((await this.getEmbeds(query))[0],);
return results
}
private async similaritySearchVectorWithScore(
query: VectorArray,
): Promise<[string, number][]> {
const memoryVectors = this.vectors
const searches = memoryVectors
.map((vector, index) => ({
similarity: similarity(query, vector.embedding),
index,
}))
.sort((a, b) => (a.similarity > b.similarity ? -1 : 0))
const result: [string, number][] = searches.map((search) => [
memoryVectors[search.index].content,
search.similarity,
]);
return result;
}
similarityCheck(query1:number[],query2: number[]) {
return similarity(query1, query2)
}
}
function similarity(a:VectorArray, b:VectorArray) {
let dot = 0;
for(let i=0;i<a.length;i++){
dot += a[i] * b[i]
}
return dot
}
type VectorArray = number[]|Float32Array
type memoryVector = {
embedding:number[]|Float32Array,
content:string,
alreadySaved?:boolean
}
const chunkArray = <T>(arr: T[], chunkSize: number) =>
arr.reduce((chunks, elem, index) => {
const chunkIndex = Math.floor(index / chunkSize);
const chunk = chunks[chunkIndex] || [];
chunks[chunkIndex] = chunk.concat([elem]);
return chunks;
}, [] as T[][]);