258 lines
9.2 KiB
TypeScript
258 lines
9.2 KiB
TypeScript
import { DataBase, type Chat, type character, type groupChat } from "src/ts/storage/database";
|
|
import type { OpenAIChat } from "..";
|
|
import type { ChatTokenizer } from "src/ts/tokenizer";
|
|
import { get } from "svelte/store";
|
|
import { requestChatData } from "../request";
|
|
import { HypaProcesser } from "./hypamemory";
|
|
import { globalFetch } from "src/ts/storage/globalApi";
|
|
import { runSummarizer } from "../transformers";
|
|
|
|
export interface HypaV2Data {
|
|
chunks: {
|
|
text: string;
|
|
targetId: string;
|
|
}[];
|
|
mainChunks: {
|
|
text: string;
|
|
targetId: string;
|
|
}[];
|
|
}
|
|
|
|
async function summary(stringlizedChat: string): Promise<{ success: boolean; data: string }> {
|
|
const db = get(DataBase);
|
|
console.log("Summarization actively called");
|
|
|
|
if (db.supaModelType === 'distilbart') {
|
|
try {
|
|
const sum = await runSummarizer(stringlizedChat);
|
|
return { success: true, data: sum };
|
|
} catch (error) {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: Summarizer: " + `${error}`
|
|
};
|
|
}
|
|
}
|
|
|
|
const supaPrompt = db.supaMemoryPrompt === '' ?
|
|
"[Summarize the ongoing role story, It must also remove redundancy and unnecessary text and content from the output to reduce tokens for gpt3 and other sublanguage models]\n"
|
|
: db.supaMemoryPrompt;
|
|
let result = '';
|
|
|
|
if (db.supaModelType !== 'subModel') {
|
|
const promptbody = stringlizedChat + '\n\n' + supaPrompt + "\n\nOutput:";
|
|
|
|
const da = await globalFetch("https://api.openai.com/v1/completions", {
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
"Authorization": "Bearer " + db.supaMemoryKey
|
|
},
|
|
method: "POST",
|
|
body: {
|
|
"model": db.supaModelType === 'curie' ? "text-curie-001"
|
|
: db.supaModelType === 'instruct35' ? 'gpt-3.5-turbo-instruct'
|
|
: "text-davinci-003",
|
|
"prompt": promptbody,
|
|
"max_tokens": 600,
|
|
"temperature": 0
|
|
}
|
|
})
|
|
console.log("Using openAI instruct 3.5 for SupaMemory");
|
|
|
|
try {
|
|
if (!da.ok) {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: HTTP: " + JSON.stringify(da)
|
|
};
|
|
}
|
|
|
|
result = (await da.data)?.choices[0]?.text?.trim();
|
|
|
|
if (!result) {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: HTTP: " + JSON.stringify(da)
|
|
};
|
|
}
|
|
|
|
return { success: true, data: result };
|
|
} catch (error) {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: HTTP: " + error
|
|
};
|
|
}
|
|
} else {
|
|
const promptbody: OpenAIChat[] = [
|
|
{
|
|
role: "user",
|
|
content: stringlizedChat
|
|
},
|
|
{
|
|
role: "system",
|
|
content: supaPrompt
|
|
}
|
|
];
|
|
console.log("Using submodel: ", db.subModel, "for supaMemory model");
|
|
const da = await requestChatData({
|
|
formated: promptbody,
|
|
bias: {},
|
|
useStreaming: false,
|
|
noMultiGen: true
|
|
}, 'submodel');
|
|
if (da.type === 'fail' || da.type === 'streaming' || da.type === 'multiline') {
|
|
return {
|
|
success: false,
|
|
data: "SupaMemory: HTTP: " + da.result
|
|
};
|
|
}
|
|
result = da.result;
|
|
}
|
|
return { success: true, data: result };
|
|
}
|
|
|
|
export async function hypaMemoryV2(
|
|
chats: OpenAIChat[],
|
|
currentTokens: number,
|
|
maxContextTokens: number,
|
|
room: Chat,
|
|
char: character | groupChat,
|
|
tokenizer: ChatTokenizer,
|
|
arg: { asHyper?: boolean, summaryModel?: string, summaryPrompt?: string, hypaModel?: string } = {}
|
|
): Promise<{ currentTokens: number; chats: OpenAIChat[]; error?: string; memory?: HypaV2Data; }> {
|
|
|
|
const db = get(DataBase);
|
|
const data: HypaV2Data = room.hypaV2Data ?? { chunks: [], mainChunks: [] };
|
|
|
|
let allocatedTokens = db.hypaAllocatedTokens;
|
|
let chunkSize = db.hypaChunkSize;
|
|
currentTokens += allocatedTokens + 50;
|
|
let mainPrompt = "";
|
|
|
|
// Processing mainChunks
|
|
if (data.mainChunks.length > 0) {
|
|
const chunk = data.mainChunks[0];
|
|
const ind = chats.findIndex(e => e.memo === chunk.targetId);
|
|
if (ind !== -1) {
|
|
const removedChats = chats.splice(0, ind);
|
|
for (const chat of removedChats) {
|
|
currentTokens -= await tokenizer.tokenizeChat(chat);
|
|
}
|
|
mainPrompt = chunk.text;
|
|
const mpToken = await tokenizer.tokenizeChat({ role: 'system', content: mainPrompt });
|
|
allocatedTokens -= mpToken;
|
|
}
|
|
// Do not shift here; retain for continuity
|
|
}
|
|
|
|
// Token management loop
|
|
while (currentTokens >= maxContextTokens) {
|
|
let idx = 0;
|
|
let targetId = '';
|
|
const halfData: OpenAIChat[] = [];
|
|
|
|
let halfDataTokens = 0;
|
|
while (halfDataTokens < chunkSize && chats[idx]) {
|
|
const chat = chats[idx];
|
|
halfDataTokens += await tokenizer.tokenizeChat(chat);
|
|
halfData.push(chat);
|
|
idx++;
|
|
targetId = chat.memo;
|
|
console.log("current target chat Id:", targetId);
|
|
}
|
|
|
|
const stringlizedChat = halfData.map(e => `${e.role}: ${e.content}`).join('\n');
|
|
const summaryData = await summary(stringlizedChat);
|
|
|
|
if (!summaryData.success) {
|
|
return {
|
|
currentTokens: currentTokens,
|
|
chats: chats,
|
|
error: summaryData.data
|
|
};
|
|
}
|
|
|
|
const summaryDataToken = await tokenizer.tokenizeChat({ role: 'system', content: summaryData.data });
|
|
mainPrompt += `\n\n${summaryData.data}`;
|
|
currentTokens -= halfDataTokens;
|
|
allocatedTokens -= summaryDataToken;
|
|
|
|
data.mainChunks.unshift({
|
|
text: mainPrompt,
|
|
targetId: targetId
|
|
});
|
|
|
|
if (allocatedTokens < 1000) {
|
|
console.log("Currently allocatedTokens for HypaMemoryV2 is short, thus summarizing mainPrompt twice.", allocatedTokens);
|
|
console.log("This is mainPrompt(summarized data): ", mainPrompt);
|
|
const summarizedMp = await summary(mainPrompt);
|
|
console.log("Re-summarized, expected behavior: ", summarizedMp.data);
|
|
const mpToken = await tokenizer.tokenizeChat({ role: 'system', content: mainPrompt });
|
|
const summaryToken = await tokenizer.tokenizeChat({ role: 'system', content: summarizedMp.data });
|
|
|
|
allocatedTokens -= summaryToken;
|
|
allocatedTokens += mpToken;
|
|
|
|
const splited = mainPrompt.split('\n\n').map(e => e.trim()).filter(e => e.length > 0);
|
|
|
|
data.chunks.push(...splited.map(e => ({
|
|
text: e,
|
|
targetId: targetId
|
|
})));
|
|
|
|
data.mainChunks[0].text = mainPrompt;
|
|
}
|
|
}
|
|
|
|
const processor = new HypaProcesser(db.hypaModel);
|
|
processor.oaikey = db.supaMemoryKey;
|
|
await processor.addText(data.chunks.filter(v => v.text.trim().length > 0).map(v => "search_document: " + v.text.trim()));
|
|
|
|
let scoredResults: { [key: string]: number } = {};
|
|
for (let i = 0; i < 3; i++) {
|
|
const pop = chats[chats.length - i - 1];
|
|
if (!pop) break;
|
|
const searched = await processor.similaritySearchScored(`search_query: ${pop.content}`);
|
|
for (const result of searched) {
|
|
const score = result[1] / (i + 1);
|
|
scoredResults[result[0]] = (scoredResults[result[0]] || 0) + score;
|
|
}
|
|
}
|
|
|
|
const scoredArray = Object.entries(scoredResults).sort((a, b) => b[1] - a[1]);
|
|
let chunkResultPrompts = "";
|
|
while (allocatedTokens > 0 && scoredArray.length > 0) {
|
|
const target = scoredArray.shift();
|
|
const tokenized = await tokenizer.tokenizeChat({ role: 'system', content: target[0].substring(14) });
|
|
if (tokenized > allocatedTokens) break;
|
|
chunkResultPrompts += target[0].substring(14) + '\n\n';
|
|
allocatedTokens -= tokenized;
|
|
}
|
|
|
|
const fullResult = `<Past Events Summary>${mainPrompt}</Past Events Summary>\n<Past Events Details>${chunkResultPrompts}</Past Events Details>`;
|
|
|
|
chats.unshift({
|
|
role: "system",
|
|
content: fullResult,
|
|
memo: "supaMemory"
|
|
});
|
|
|
|
// Add the remaining chats after the last mainChunk's targetId
|
|
const lastTargetId = data.mainChunks.length > 0 ? data.mainChunks[0].targetId : null;
|
|
if (lastTargetId) {
|
|
const lastIndex = chats.findIndex(chat => chat.memo === lastTargetId);
|
|
if (lastIndex !== -1) {
|
|
const remainingChats = chats.slice(lastIndex + 1);
|
|
chats = chats.slice(0, 1).concat(remainingChats);
|
|
}
|
|
}
|
|
|
|
console.log("model being used: ", db.hypaModel, db.supaModelType, "\nCurrent session tokens: ", currentTokens, "\nAll chats, including memory system prompt: ", chats, "\nMemory data, with all the chunks: ", data);
|
|
return {
|
|
currentTokens: currentTokens,
|
|
chats: chats,
|
|
memory: data
|
|
};
|
|
}
|