Files
risuai/src/ts/tokenizer.ts
2025-04-21 14:57:19 +09:00

526 lines
18 KiB
TypeScript

import type { Tiktoken } from "@dqbd/tiktoken";
import type { Tokenizer } from "@mlc-ai/web-tokenizers";
import { type groupChat, type character, type Chat, getCurrentCharacter, getDatabase } from "./storage/database.svelte";
import type { MultiModal, OpenAIChat } from "./process/index.svelte";
import { supportsInlayImage } from "./process/files/inlays";
import { risuChatParser } from "./parser.svelte";
import { tokenizeGGUFModel } from "./process/models/local";
import { globalFetch } from "./globalApi.svelte";
import { getModelInfo, LLMTokenizer, type LLMModel } from "./model/modellist";
import { pluginV2 } from "./plugins/plugins";
import type { GemmaTokenizer } from "@huggingface/transformers";
import { LRUMap } from 'mnemonist';
const MAX_CACHE_SIZE = 1500;
const encodeCache = new LRUMap<string, number[] | Uint32Array | Int32Array>(MAX_CACHE_SIZE);
function getHash(
data: string,
aiModel: string,
customTokenizer: string,
currentPluginProvider: string,
googleClaudeTokenizing: boolean,
modelInfo: LLMModel,
pluginTokenizer: string
): string {
const combined = `${data}::${aiModel}::${customTokenizer}::${currentPluginProvider}::${googleClaudeTokenizing ? '1' : '0'}::${modelInfo.tokenizer}::${pluginTokenizer}`;
return combined;
}
export const tokenizerList = [
['tik', 'Tiktoken (OpenAI)'],
['mistral', 'Mistral'],
['novelai', 'NovelAI'],
['claude', 'Claude'],
['llama', 'Llama'],
['llama3', 'Llama3'],
['novellist', 'Novellist'],
['gemma', 'Gemma'],
['cohere', 'Cohere'],
['deepseek', 'DeepSeek'],
] as const
export async function encode(data:string):Promise<(number[]|Uint32Array|Int32Array)>{
const db = getDatabase();
const modelInfo = getModelInfo(db.aiModel);
const pluginTokenizer = pluginV2.providerOptions.get(db.currentPluginProvider)?.tokenizer ?? "none";
let cacheKey = ''
if(db.useTokenizerCaching){
cacheKey = getHash(
data,
db.aiModel,
db.customTokenizer,
db.currentPluginProvider,
db.googleClaudeTokenizing,
modelInfo,
pluginTokenizer
);
const cachedResult = encodeCache.get(cacheKey);
if (cachedResult !== undefined) {
return cachedResult;
}
}
let result: number[] | Uint32Array | Int32Array;
if(db.aiModel === 'openrouter' || db.aiModel === 'reverse_proxy'){
switch(db.customTokenizer){
case 'mistral':
result = await tokenizeWebTokenizers(data, 'mistral'); break;
case 'llama':
result = await tokenizeWebTokenizers(data, 'llama'); break;
case 'novelai':
result = await tokenizeWebTokenizers(data, 'novelai'); break;
case 'claude':
result = await tokenizeWebTokenizers(data, 'claude'); break;
case 'novellist':
result = await tokenizeWebTokenizers(data, 'novellist'); break;
case 'llama3':
result = await tokenizeWebTokenizers(data, 'llama'); break;
case 'gemma':
result = await gemmaTokenize(data); break;
case 'cohere':
result = await tokenizeWebTokenizers(data, 'cohere'); break;
case 'deepseek':
result = await tokenizeWebTokenizers(data, 'DeepSeek'); break;
default:
result = await tikJS(data, 'o200k_base'); break;
}
} else if (db.aiModel === 'custom' && pluginTokenizer) {
switch(pluginTokenizer){
case 'mistral':
result = await tokenizeWebTokenizers(data, 'mistral'); break;
case 'llama':
result = await tokenizeWebTokenizers(data, 'llama'); break;
case 'novelai':
result = await tokenizeWebTokenizers(data, 'novelai'); break;
case 'claude':
result = await tokenizeWebTokenizers(data, 'claude'); break;
case 'novellist':
result = await tokenizeWebTokenizers(data, 'novellist'); break;
case 'llama3':
result = await tokenizeWebTokenizers(data, 'llama'); break;
case 'gemma':
result = await gemmaTokenize(data); break;
case 'cohere':
result = await tokenizeWebTokenizers(data, 'cohere'); break;
case 'o200k_base':
result = await tikJS(data, 'o200k_base'); break;
case 'cl100k_base':
result = await tikJS(data, 'cl100k_base'); break;
case 'custom':
result = await pluginV2.providerOptions.get(db.currentPluginProvider)?.tokenizerFunc?.(data) ?? [0]; break;
default:
result = await tikJS(data, 'o200k_base'); break;
}
}
// Fallback
if (result === undefined) {
if(modelInfo.tokenizer === LLMTokenizer.NovelList){
result = await tokenizeWebTokenizers(data, 'novellist');
} else if(modelInfo.tokenizer === LLMTokenizer.Claude){
result = await tokenizeWebTokenizers(data, 'claude');
} else if(modelInfo.tokenizer === LLMTokenizer.NovelAI){
result = await tokenizeWebTokenizers(data, 'novelai');
} else if(modelInfo.tokenizer === LLMTokenizer.Mistral){
result = await tokenizeWebTokenizers(data, 'mistral');
} else if(modelInfo.tokenizer === LLMTokenizer.Llama){
result = await tokenizeWebTokenizers(data, 'llama');
} else if(modelInfo.tokenizer === LLMTokenizer.Local){
result = await tokenizeGGUFModel(data);
} else if(modelInfo.tokenizer === LLMTokenizer.tiktokenO200Base){
result = await tikJS(data, 'o200k_base');
} else if(modelInfo.tokenizer === LLMTokenizer.GoogleCloud && db.googleClaudeTokenizing){
result = await tokenizeGoogleCloud(data);
} else if(modelInfo.tokenizer === LLMTokenizer.Gemma || modelInfo.tokenizer === LLMTokenizer.GoogleCloud){
result = await gemmaTokenize(data);
} else if(modelInfo.tokenizer === LLMTokenizer.DeepSeek){
result = await tokenizeWebTokenizers(data, 'DeepSeek');
} else if(modelInfo.tokenizer === LLMTokenizer.Cohere){
result = await tokenizeWebTokenizers(data, 'cohere');
} else {
result = await tikJS(data);
}
}
if(db.useTokenizerCaching){
encodeCache.set(cacheKey, result);
}
return result;
}
type tokenizerType = 'novellist'|'claude'|'novelai'|'llama'|'mistral'|'llama3'|'gemma'|'cohere'|'googleCloud'|'DeepSeek'
let tikParser:Tiktoken = null
let tokenizersTokenizer:Tokenizer = null
let tokenizersType:tokenizerType = null
let lastTikModel = 'cl100k_base'
let googleCloudTokenizedCache = new Map<string, number>()
async function tokenizeGoogleCloud(text:string) {
const db = getDatabase()
const model = getModelInfo(db.aiModel)
if(googleCloudTokenizedCache.has(text + model.internalID)){
const count = googleCloudTokenizedCache.get(text)
return new Uint32Array(count)
}
const res = await fetch(`https://generativelanguage.googleapis.com/v1beta/models/${model.internalID}:countTokens?key=${db.google?.accessToken}`, {
method: 'POST',
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
contents: [{
parts:[{
text: text
}]
}]
}),
})
if(res.status !== 200){
return await tokenizeWebTokenizers(text, 'gemma')
}
const json = await res.json()
googleCloudTokenizedCache.set(text + model.internalID, json.totalTokens as number)
const count = json.totalTokens as number
return new Uint32Array(count)
}
let gemmaTokenizer:GemmaTokenizer = null
async function gemmaTokenize(text:string) {
if(!gemmaTokenizer){
const {GemmaTokenizer} = await import('@huggingface/transformers')
gemmaTokenizer = new GemmaTokenizer(
await (await fetch("/token/llama/llama3.json")
).json(), {})
}
return gemmaTokenizer.encode(text)
}
async function tikJS(text:string, model='cl100k_base') {
if(!tikParser || lastTikModel !== model){
tikParser?.free()
if(model === 'cl100k_base'){
const {Tiktoken} = await import('@dqbd/tiktoken')
const cl100k_base = await import("@dqbd/tiktoken/encoders/cl100k_base.json");
lastTikModel = model
tikParser = new Tiktoken(
cl100k_base.bpe_ranks,
cl100k_base.special_tokens,
cl100k_base.pat_str
);
}
if(model === 'o200k_base'){
const {Tiktoken} = await import('@dqbd/tiktoken')
const o200k_base = await import("src/etc/o200k_base.json");
lastTikModel = model
tikParser = new Tiktoken(
o200k_base.bpe_ranks,
o200k_base.special_tokens,
o200k_base.pat_str
);
}
}
return tikParser.encode(text)
}
async function geminiTokenizer(text:string) {
const db = getDatabase()
const fetchResult = await globalFetch(`https://generativelanguage.googleapis.com/v1beta/${db.aiModel}:countTextTokens`, {
"headers": {
"content-type": "application/json",
"authorization": `Bearer ${db.google.accessToken}`
},
"body": JSON.stringify({
"prompt":{
text: text
}
}),
"method": "POST"
})
if(!fetchResult.ok){
//fallback to tiktoken
return await tikJS(text)
}
const result = fetchResult.data
return result.tokenCount ?? 0
}
async function tokenizeWebTokenizers(text:string, type:tokenizerType) {
if(type !== tokenizersType || !tokenizersTokenizer){
const webTokenizer = await import('@mlc-ai/web-tokenizers')
switch(type){
case "novellist":
tokenizersTokenizer = await webTokenizer.Tokenizer.fromSentencePiece(
await (await fetch("/token/trin/spiece.model")
).arrayBuffer())
break
case "claude":
tokenizersTokenizer = await webTokenizer.Tokenizer.fromJSON(
await (await fetch("/token/claude/claude.json")
).arrayBuffer())
break
case 'llama3':
tokenizersTokenizer = await webTokenizer.Tokenizer.fromJSON(
await (await fetch("/token/llama/llama3.json")
).arrayBuffer())
break
case 'cohere':
tokenizersTokenizer = await webTokenizer.Tokenizer.fromJSON(
await (await fetch("/token/cohere/tokenizer.json")
).arrayBuffer())
break
case 'novelai':
tokenizersTokenizer = await webTokenizer.Tokenizer.fromSentencePiece(
await (await fetch("/token/nai/nerdstash_v2.model")
).arrayBuffer())
break
case 'llama':
tokenizersTokenizer = await webTokenizer.Tokenizer.fromSentencePiece(
await (await fetch("/token/llama/llama.model")
).arrayBuffer())
break
case 'mistral':
tokenizersTokenizer = await webTokenizer.Tokenizer.fromSentencePiece(
await (await fetch("/token/mistral/tokenizer.model")
).arrayBuffer())
break
case 'gemma':
tokenizersTokenizer = await webTokenizer.Tokenizer.fromSentencePiece(
await (await fetch("/token/gemma/tokenizer.model")
).arrayBuffer())
break
case 'DeepSeek':
tokenizersTokenizer = await webTokenizer.Tokenizer.fromJSON(
await (await fetch("/token/deepseek/tokenizer.json")
).arrayBuffer())
break
}
tokenizersType = type
}
return (tokenizersTokenizer.encode(text))
}
export async function tokenizerChar(char:character) {
const encoded = await encode(char.name + '\n' + char.firstMessage + '\n' + char.desc)
return encoded.length
}
export async function tokenize(data:string) {
const encoded = await encode(data)
return encoded.length
}
export async function tokenizeAccurate(data:string, consistantChar?:boolean) {
data = risuChatParser(data.replace('{{slot}}',''), {
tokenizeAccurate: true,
consistantChar: consistantChar,
})
const encoded = await encode(data)
return encoded.length
}
export class ChatTokenizer {
private chatAdditionalTokens:number
private useName:'name'|'noName'
constructor(chatAdditionalTokens:number, useName:'name'|'noName'){
this.chatAdditionalTokens = chatAdditionalTokens
this.useName = useName
}
async tokenizeChat(data:OpenAIChat, args:{
countThoughts?:boolean,
} = {}) {
let encoded = (await encode(data.content)).length + this.chatAdditionalTokens
if(data.name && this.useName ==='name'){
encoded += (await encode(data.name)).length + 1
}
if(data.multimodals && data.multimodals.length > 0){
for(const multimodal of data.multimodals){
encoded += await this.tokenizeMultiModal(multimodal)
}
}
if(data.thoughts && data.thoughts.length > 0 && args.countThoughts){
for(const thought of data.thoughts){
encoded += (await encode(thought)).length + 1
}
}
return encoded
}
async tokenizeChats(data:OpenAIChat[]){
let encoded = 0
for(const chat of data){
encoded += await this.tokenizeChat(chat)
}
return encoded
}
async tokenizeMultiModal(data:MultiModal){
const db = getDatabase()
if(!supportsInlayImage()){
return this.chatAdditionalTokens
}
if(db.gptVisionQuality === 'low'){
return 87
}
let encoded = this.chatAdditionalTokens
let height = data.height ?? 0
let width = data.width ?? 0
if(height === width){
if(height > 768){
height = 768
width = 768
}
}
else if(height > width){
if(width > 768){
width = 768
height = height * (768 / width)
}
}
else{
if(height > 768){
height = 768
width = width * (768 / height)
}
}
const chunkSize = Math.ceil(width / 512) * Math.ceil(height / 512)
encoded += chunkSize * 2
encoded += 85
return encoded
}
}
export async function tokenizeNum(data:string) {
const encoded = await encode(data)
return encoded
}
export async function strongBan(data:string, bias:{[key:number]:number}) {
if(localStorage.getItem('strongBan_' + data)){
return JSON.parse(localStorage.getItem('strongBan_' + data))
}
const performace = performance.now()
const length = Object.keys(bias).length
let charAlt = [
data,
data.trim(),
data.toLocaleUpperCase(),
data.toLocaleLowerCase(),
data[0].toLocaleUpperCase() + data.slice(1),
data[0].toLocaleLowerCase() + data.slice(1),
]
let banChars = " !\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~“”‘’«»「」…–―※"
let unbanChars:number[] = []
for(const char of banChars){
unbanChars.push((await tokenizeNum(char))[0])
}
for(const char of banChars){
const encoded = await tokenizeNum(char)
if(encoded.length > 0){
if(!unbanChars.includes(encoded[0])){
bias[encoded[0]] = -100
}
}
for(const alt of charAlt){
let fchar = char
const encoded = await tokenizeNum(alt + fchar)
if(encoded.length > 0){
if(!unbanChars.includes(encoded[0])){
bias[encoded[0]] = -100
}
}
const encoded2 = await tokenizeNum(fchar + alt)
if(encoded2.length > 0){
if(!unbanChars.includes(encoded2[0])){
bias[encoded2[0]] = -100
}
}
}
}
localStorage.setItem('strongBan_' + data, JSON.stringify(bias))
return bias
}
export async function getCharToken(char?:character|groupChat|null){
let persistant = 0
let dynamic = 0
if(!char){
const c = getCurrentCharacter()
char = c
}
if(char.type === 'group'){
return {persistant:0, dynamic:0}
}
const basicTokenize = async (data:string) => {
data = data.replace(/{{char}}/g, char.name).replace(/<char>/g, char.name)
return await tokenize(data)
}
persistant += await basicTokenize(char.desc)
persistant += await basicTokenize(char.personality ?? '')
persistant += await basicTokenize(char.scenario ?? '')
for(const lore of char.globalLore){
let cont = lore.content.split('\n').filter((line) => {
if(line.startsWith('@@')){
return false
}
if(line === ''){
return false
}
return true
}).join('\n')
dynamic += await basicTokenize(cont)
}
return {persistant, dynamic}
}
export async function getChatToken(chat:Chat) {
let persistant = 0
const chatTokenizer = new ChatTokenizer(0, 'name')
const chatf = chat.message.map((d) => {
return {
role: d.role === 'user' ? 'user' : 'assistant',
content: d.data,
} as OpenAIChat
})
for(const chat of chatf){
persistant += await chatTokenizer.tokenizeChat(chat)
}
return persistant
}