This commit is contained in:
2025-07-22 04:58:42 +09:00
commit 9448d2889b
7 changed files with 1118 additions and 0 deletions

141
main.tex Normal file
View File

@@ -0,0 +1,141 @@
\documentclass[12pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath, amssymb, amsthm}
\usepackage{pgfplots}
\usepackage{geometry}
\geometry{margin=1in}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\theoremstyle{remark}
\newtheorem*{remark}{Remark}
% Document
\begin{document}
\title{Simple Proof That \( \pi ^ {3} < 3^{\pi} \)}
\author{Minco}
\date{\today}
\maketitle
\section*{Introduction}
This document presents a very simple mathematical proof that $\pi^3 < 3^{\pi}$.
The proof illustrates the beauty of pure mathematics, which allows a simple question to be shown in verbose manner.
\begin{theorem}
\[
\pi^3 < 3^{\pi}
\]
\end{theorem}
\begin{proposition}
Since the both bases are over 1, we can exponentiate both sides of the inequality by \(\frac{1}{3 \pi}\).
So we have to prove that:
\[
\pi^{\frac{1}{\pi}} < 3^{\frac{1}{3}}
\]
\end{proposition}
\section*{Limit Analysis}
Consider the function
\[
f(x) = x^{\frac{1}{x}}, \quad x > 0.
\]
First, take the logarithm on both sides.
\[
\log {f(x)} = \frac{1}{x} \log{x} \quad (\text{log is a natural logarithm})
\]
\[
\therefore f(x) = e^{\frac{1}{x} \log{x}}
\]
Then analyze the limits at the boundaries of the domain:
\[
\lim_{x \to 0^+} f(x) = \lim_{X \to - \infty} e^{X} = 0
\]
And
\[
\lim_{x \to \infty} f(x) = \lim_{X \to 0^+} e^{X} = 1 .
\]
\section*{Derivative Analysis}
To find the derivative of \(f(x)\), use logarithmic differentiation as in Limit Analysis:
\[
y = x^{\frac{1}{x}} \implies \log y = \frac{\ln x}{x}.
\]
Differentiating both sides:
\[
\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\log x}{x}\right) = \frac{1 - \log x}{x^2}.
\]
Since \(x > 0\),
\[
\frac{1- \log x}{x^2} = 0 \quad \rm{iff.} \quad 1 - \log x = 0
\]
\[
\therefore x = e \quad \text{where} \quad \frac{d}{dx} f(x) = 0
\]
\section*{Graph}
\begin{center}
\begin{tikzpicture}
\begin{axis}[
domain=0.1:5,
samples=200,
axis lines=middle,
xlabel=$x$, ylabel={$f(x)$},
ymin=0, ymax=2,
]
\addplot [black, thick] {x^(1/x)};
\addplot[
only marks,
mark=*,
mark size=2pt,
black
] coordinates {(3, {3^(1/3)})};
\draw[dotted] (axis cs:3,0) -- (axis cs:3,{3^(1/3)});
\draw[dotted] (axis cs:0,{3^(1/3)}) -- (axis cs:3,{3^(1/3)});
\node [anchor=south east] at (axis cs:3,{3^(1/3)}) {$\bigl(3,\,3^{\frac{1}{3}}\bigr)$};
\addplot[
only marks,
mark=*,
mark size=2pt,
black
] coordinates {(3.14, {3.14^(1/3.14)})};
\draw[dotted] (axis cs:3.14,0) -- (axis cs:3.14,{3.14^(1/3.14)});
\draw[dotted] (axis cs:0,{3.14^(1/3.14)}) -- (axis cs:3.14,{3.14^(1/3.14)});
\node [anchor=south west] at (axis cs:3.14,{3.14^(1/3.14)}) {$\bigl(\pi,\,\pi^{\frac{1}{\pi}}\bigr)$};
\end{axis}
\end{tikzpicture}
\end{center}
\begin{proof}
As shown in the graph,
\[
\pi^{\frac{1}{\pi}} < 3^{\frac{1}{3}}
\]
\[
\therefore \boxed{\pi^3 < 3^{\pi}}
\]
\end{proof}
\end{document}