\documentclass[12pt]{article} \usepackage[utf8]{inputenc} \usepackage{amsmath, amssymb, amsthm} \usepackage{pgfplots} \usepackage{geometry} \geometry{margin=1in} \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \theoremstyle{remark} \newtheorem*{remark}{Remark} % Document \begin{document} \title{Simple Proof That \( \pi ^ {3} < 3^{\pi} \)} \author{Minco} \date{\today} \maketitle \section*{Introduction} This document presents a very simple mathematical proof that $\pi^3 < 3^{\pi}$. The proof illustrates the beauty of pure mathematics, which allows a simple question to be shown in verbose manner. \begin{theorem} \[ \pi^3 < 3^{\pi} \] \end{theorem} \begin{proposition} Since the both bases are over 1, we can exponentiate both sides of the inequality by \(\frac{1}{3 \pi}\). So we have to prove that: \[ \pi^{\frac{1}{\pi}} < 3^{\frac{1}{3}} \] \end{proposition} \section*{Limit Analysis} Consider the function \[ f(x) = x^{\frac{1}{x}}, \quad x > 0. \] First, take the logarithm on both sides. \[ \log {f(x)} = \frac{1}{x} \log{x} \quad (\text{log is a natural logarithm}) \] \[ \therefore f(x) = e^{\frac{1}{x} \log{x}} \] Then analyze the limits at the boundaries of the domain: \[ \lim_{x \to 0^+} f(x) = \lim_{X \to - \infty} e^{X} = 0 \] And \[ \lim_{x \to \infty} f(x) = \lim_{X \to 0^+} e^{X} = 1 . \] \section*{Derivative Analysis} To find the derivative of \(f(x)\), use logarithmic differentiation as in Limit Analysis: \[ y = x^{\frac{1}{x}} \implies \log y = \frac{\ln x}{x}. \] Differentiating both sides: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\log x}{x}\right) = \frac{1 - \log x}{x^2}. \] Since \(x > 0\), \[ \frac{1- \log x}{x^2} = 0 \quad \rm{iff.} \quad 1 - \log x = 0 \] \[ \therefore x = e \quad \text{where} \quad \frac{d}{dx} f(x) = 0 \] \section*{Graph} \begin{center} \begin{tikzpicture} \begin{axis}[ domain=0.1:5, samples=200, axis lines=middle, xlabel=$x$, ylabel={$f(x)$}, ymin=0, ymax=2, ] \addplot [black, thick] {x^(1/x)}; \addplot[ only marks, mark=*, mark size=2pt, black ] coordinates {(3, {3^(1/3)})}; \draw[dotted] (axis cs:3,0) -- (axis cs:3,{3^(1/3)}); \draw[dotted] (axis cs:0,{3^(1/3)}) -- (axis cs:3,{3^(1/3)}); \node [anchor=south east] at (axis cs:3,{3^(1/3)}) {$\bigl(3,\,3^{\frac{1}{3}}\bigr)$}; \addplot[ only marks, mark=*, mark size=2pt, black ] coordinates {(3.14, {3.14^(1/3.14)})}; \draw[dotted] (axis cs:3.14,0) -- (axis cs:3.14,{3.14^(1/3.14)}); \draw[dotted] (axis cs:0,{3.14^(1/3.14)}) -- (axis cs:3.14,{3.14^(1/3.14)}); \node [anchor=south west] at (axis cs:3.14,{3.14^(1/3.14)}) {$\bigl(\pi,\,\pi^{\frac{1}{\pi}}\bigr)$}; \end{axis} \end{tikzpicture} \end{center} \begin{proof} As shown in the graph, \[ \pi^{\frac{1}{\pi}} < 3^{\frac{1}{3}} \] \[ \therefore \boxed{\pi^3 < 3^{\pi}} \] \end{proof} \end{document}