feat: AI's refactoring

This commit is contained in:
2025-12-29 00:20:03 +09:00
parent c668a2bcd8
commit 5ed98268d2
6 changed files with 290 additions and 175 deletions

View File

@@ -4,7 +4,10 @@ version = "0.1.0"
edition = "2024" edition = "2024"
[dependencies] [dependencies]
anyhow = "1.0.100"
clap = "4.5.53"
crossbeam = { version = "0.8.4", features = ["crossbeam-channel"] } crossbeam = { version = "0.8.4", features = ["crossbeam-channel"] }
dotenv = "0.15.0"
futures-util = "0.3.31" futures-util = "0.3.31"
parking_lot = "0.12.5" parking_lot = "0.12.5"
rav1e = "0.8.1" rav1e = "0.8.1"
@@ -12,6 +15,8 @@ scap = "0.0.8"
scopeguard = "1.2.0" scopeguard = "1.2.0"
tokio = { version = "1.48.0", features = ["full"] } tokio = { version = "1.48.0", features = ["full"] }
tokio-tungstenite = "0.28.0" tokio-tungstenite = "0.28.0"
tracing = "0.1.44"
tracing-subscriber = "0.3.22"
v_frame = "0.3.9" v_frame = "0.3.9"
vpx-rs = "0.2.1" vpx-rs = "0.2.1"
yuv = "0.8.9" yuv = "0.8.9"

26
backend/src/config.rs Normal file
View File

@@ -0,0 +1,26 @@
use clap::Parser;
use std::net::SocketAddr;
#[derive(Parser, Debug, Clone)]
#[command(version, about, long_about = None)]
pub struct Args {
/// Address to listen on
#[arg(long, default_value = "0.0.0.0:8080")]
pub addr: SocketAddr,
/// Video width
#[arg(long, default_value_t = 1920)]
pub width: u32,
/// Video height
#[arg(long, default_value_t = 1080)]
pub height: u32,
/// Target FPS
#[arg(long, default_value_t = 30)]
pub fps: u32,
/// Bitrate in kbps
#[arg(long, default_value_t = 500)]
pub bitrate: u32,
}

176
backend/src/engine.rs Normal file
View File

@@ -0,0 +1,176 @@
use std::num::NonZero;
use std::thread;
use std::time::{Duration, Instant};
use anyhow::{Context, Result};
use tokio::sync::broadcast;
use tracing::{error, info, warn};
use vpx_rs::enc::{CodecId, EncoderFrameFlags, EncodingDeadline};
use vpx_rs::{Encoder, EncoderConfig, RateControl, Timebase};
use scap::capturer::{Area, Capturer, Options, Point, Resolution, Size};
use scap::frame::FrameType;
use crate::config::Args;
use crate::pixelutil;
/// Represents a video packet to be sent to clients.
#[derive(Clone, Debug)]
pub struct VideoPacket {
pub data: Vec<u8>,
pub is_key: bool,
}
/// Manages video capture and encoding.
pub struct VideoEngine {
args: Args,
packet_tx: broadcast::Sender<VideoPacket>,
shutdown_tx: broadcast::Sender<()>,
}
impl VideoEngine {
pub fn new(args: Args) -> Self {
let (packet_tx, _) = broadcast::channel(100);
let (shutdown_tx, _) = broadcast::channel(1);
Self {
args,
packet_tx,
shutdown_tx,
}
}
pub fn subscribe(&self) -> broadcast::Receiver<VideoPacket> {
self.packet_tx.subscribe()
}
pub fn start(&self) {
let args = self.args.clone();
let packet_tx = self.packet_tx.clone();
let mut shutdown_rx = self.shutdown_tx.subscribe();
// Spawn the capture/encode loop in a separate dedicated thread
// because it involves blocking heavy computation.
thread::spawn(move || {
if let Err(e) = run_capture_loop(args, packet_tx, &mut shutdown_rx) {
error!("Capture loop failed: {:?}", e);
}
});
}
#[allow(dead_code)]
pub fn stop(&self) {
let _ = self.shutdown_tx.send(());
}
}
fn run_capture_loop(
args: Args,
packet_tx: broadcast::Sender<VideoPacket>,
shutdown_rx: &mut broadcast::Receiver<()>,
) -> Result<()> {
// 1. Setup Capturer
let options = Options {
fps: args.fps,
show_cursor: true,
show_highlight: true,
output_type: FrameType::YUVFrame,
output_resolution: Resolution::_1080p,
crop_area: Some(Area {
origin: Point { x: 0.0, y: 0.0 },
size: Size {
width: args.width as f64,
height: args.height as f64,
},
}),
..Default::default()
};
let mut capturer = Capturer::build(options).context("Failed to build capturer")?;
capturer.start_capture();
// 2. Setup Encoder
let mut config = EncoderConfig::<u8>::new(
CodecId::VP9,
args.width,
args.height,
Timebase {
num: NonZero::new(1).unwrap(),
den: NonZero::new(args.fps).unwrap(),
},
RateControl::ConstantBitRate(args.bitrate),
)
.context("Failed to create encoder config")?;
config.threads = 4; // Use reasonable number of threads
config.lag_in_frames = 0; // Low latency
let mut encoder = Encoder::new(config).context("Failed to create encoder")?;
let frame_duration = Duration::from_secs_f64(1.0 / args.fps as f64);
let mut next_frame_time = Instant::now();
let mut pts: i64 = 0;
info!("Starting capture loop: {}x{} @ {}fps", args.width, args.height, args.fps);
loop {
// Check for shutdown signal
if shutdown_rx.try_recv().is_ok() {
info!("Shutting down capture loop");
break;
}
let now = Instant::now();
if now < next_frame_time {
thread::sleep(next_frame_time - now);
}
next_frame_time += frame_duration;
match capturer.get_next_frame() {
Ok(captured_frame) => {
// Convert frame
let yuv_buffer = pixelutil::frame_to_yuv(captured_frame);
let yuv_image = pixelutil::apply_frame(&yuv_buffer, args.width as usize, args.height as usize);
// Encode
// For real-time streaming, we force keyframes periodically could be an improvement,
// but for now relying on default behavior or client requests (not impl here).
let flags = EncoderFrameFlags::empty();
match encoder.encode(
pts,
1, // Duration (in timebase units)
yuv_image,
EncodingDeadline::Realtime,
flags,
) {
Ok(packets) => {
for packet in packets {
if let vpx_rs::Packet::CompressedFrame(frame) = packet {
let video_packet = VideoPacket {
data: frame.data.to_vec(),
is_key: frame.flags.is_key,
};
// Broadcast to all connected clients
// It's okay if no one is listening
let _ = packet_tx.send(video_packet);
}
}
pts += 1;
},
Err(e) => {
error!("Encoding error: {:?}", e);
// Continue loop, maybe transient
}
}
}
Err(e) => {
// Scap might return error if no frame is available yet or other issues
// We just log debug/warn and continue
warn!("Capture error (might be transient): {:?}", e);
thread::sleep(Duration::from_millis(10));
}
}
}
Ok(())
}

View File

@@ -1,189 +1,110 @@
use std::borrow::Borrow; use std::net::SocketAddr;
use std::num::NonZero; use std::sync::Arc;
use std::thread;
use std::time::Instant;
use anyhow::Result;
use clap::Parser;
use futures_util::{SinkExt, StreamExt}; use futures_util::{SinkExt, StreamExt};
use rav1e::config::SpeedSettings;
use rav1e::data::Rational;
use scap::capturer::{Area, Capturer, Options, Point};
use scap::frame::FrameType;
use tokio::net::{TcpListener, TcpStream}; use tokio::net::{TcpListener, TcpStream};
use tokio_tungstenite::accept_async;
use tokio_tungstenite::tungstenite::Message; use tokio_tungstenite::tungstenite::Message;
use vpx_rs::enc::{CodecId, CompressedFrameFlags, EncoderProfile}; use tracing::{error, info, warn};
use vpx_rs::{EncoderFlags, RateControl, Timebase, YUVImageData}; use tracing_subscriber::FmtSubscriber;
mod config;
mod engine;
mod pixelutil; mod pixelutil;
#[tokio::main(flavor = "multi_thread")] use config::Args;
async fn main() -> Result<(), Box<dyn std::error::Error>> { use engine::VideoEngine;
let addr = "0.0.0.0:8080";
let listener = TcpListener::bind(&addr).await?;
println!("Listening on: {}", addr);
while let Ok((stream, _)) = listener.accept().await { #[tokio::main]
tokio::spawn(accept_connection(stream)); async fn main() -> Result<()> {
// 1. Initialize logging
let subscriber = FmtSubscriber::builder()
.with_max_level(tracing::Level::INFO)
.finish();
tracing::subscriber::set_global_default(subscriber).expect("setting default subscriber failed");
// 2. Parse arguments
let args = Args::parse();
let addr = args.addr;
// 3. Start Video Engine
let engine = Arc::new(VideoEngine::new(args.clone()));
engine.start();
// 4. Start TCP Listener
let listener = TcpListener::bind(&addr).await?;
info!("Listening on: {}", addr);
// 5. Connection handling loop
while let Ok((stream, peer_addr)) = listener.accept().await {
let engine = engine.clone();
tokio::spawn(async move {
if let Err(e) = accept_connection(stream, peer_addr, engine).await {
error!("Connection error from {}: {:?}", peer_addr, e);
}
});
} }
Ok(()) Ok(())
} }
async fn accept_connection(stream: TcpStream) { async fn accept_connection(stream: TcpStream, peer_addr: SocketAddr, engine: Arc<VideoEngine>) -> Result<()> {
let addr = stream info!("New connection from: {}", peer_addr);
.peer_addr()
.expect("connected streams should have a peer addr");
println!("Peer address: {}", addr);
let ws_stream = match accept_async(stream).await { let ws_stream = tokio_tungstenite::accept_async(stream).await?;
Ok(ws) => ws, info!("WebSocket handshake success: {}", peer_addr);
Err(e) => {
eprintln!("Error during the websocket handshake occurred: {}", e);
return;
}
};
println!("New WebSocket connection: {}", addr);
let (mut write, mut read) = ws_stream.split(); let (mut write, mut read) = ws_stream.split();
// Subscribe to video feed
let mut rx = engine.subscribe();
// Channel to communicate between the video source thread and the websocket task // Task to send video frames to client
// We send (data, is_key) let mut send_task = tokio::spawn(async move {
let (tx, mut rx) = tokio::sync::mpsc::channel::<(Vec<u8>, bool)>(100); loop {
match rx.recv().await {
Ok(packet) => {
let mut payload = Vec::with_capacity(packet.data.len() + 1);
// 1 = keyframe, 0 = delta
payload.push(if packet.is_key { 1 } else { 0 });
payload.extend_from_slice(&packet.data);
// Spawn a blocking thread for video processing (currently just a placeholder loop) if let Err(e) = write.send(Message::Binary(payload.into())).await {
std::thread::spawn(move || { // Client likely disconnected
if let Err(e) = process_video(tx) { warn!("Failed to send to {}: {}", peer_addr, e);
eprintln!("Video processing error: {}", e);
}
});
// Handle incoming messages (mostly to keep connection alive or handle close)
let mut read_task = tokio::spawn(async move {
while let Some(msg) = read.next().await {
match msg {
Ok(m) => {
if m.is_close() {
break; break;
} }
} }
Err(tokio::sync::broadcast::error::RecvError::Lagged(skipped)) => {
warn!("Client {} lagged, skipped {} frames", peer_addr, skipped);
}
Err(tokio::sync::broadcast::error::RecvError::Closed) => {
break;
}
}
}
});
// Task to read messages (keep-alive / close)
let mut recv_task = tokio::spawn(async move {
while let Some(msg) = read.next().await {
match msg {
Ok(Message::Close(_)) => break,
Ok(_) => {}, // Ignore other messages for now
Err(_) => break, Err(_) => break,
} }
} }
}); });
// Write loop
let mut write_task = tokio::spawn(async move {
while let Some((data, is_key)) = rx.recv().await {
// Prefix: 0x1 for key frame, 0x0 for delta frame
let mut payload = Vec::with_capacity(data.len() + 1);
payload.push(if is_key { 1 } else { 0 });
payload.extend_from_slice(&data);
let msg = Message::Binary(payload.into());
if let Err(e) = write.send(msg).await {
eprintln!("Error sending message: {}", e);
break;
}
}
// Connection closed or processing done
let _ = write.close().await;
});
tokio::select! { tokio::select! {
_ = (&mut read_task) => { _ = (&mut send_task) => {},
write_task.abort(); _ = (&mut recv_task) => {},
},
_ = (&mut write_task) => {
read_task.abort();
}
}; };
println!("Connection closed: {}", addr); info!("Connection closed: {}", peer_addr);
} send_task.abort();
recv_task.abort();
fn process_video(
tx: tokio::sync::mpsc::Sender<(Vec<u8>, bool)>, Ok(())
) -> Result<(), Box<dyn std::error::Error>> {
let options = Options {
fps: 30,
target: None,
show_cursor: true,
show_highlight: true,
excluded_targets: None,
output_type: FrameType::YUVFrame,
output_resolution: scap::capturer::Resolution::_1080p,
crop_area: Some(Area {
origin: Point { x: 0.0, y: 0.0 },
size: scap::capturer::Size {
width: 1920.0,
height: 1080.0,
},
}),
..Default::default()
};
let mut config: vpx_rs::EncoderConfig<u8> = vpx_rs::EncoderConfig::new(
CodecId::VP9,
1920,
1080,
Timebase {
num: NonZero::new(1).unwrap(),
den: NonZero::new(30).unwrap(),
},
RateControl::ConstantBitRate(500),
)?;
config.threads = 32;
config.lag_in_frames = 0;
let mut encoder = vpx_rs::Encoder::new(config)?;
let mut capturer = Capturer::build(options)?;
capturer.start_capture();
let (frame_tx, frame_rx) = crossbeam::channel::bounded::<Vec<u8>>(1);
thread::spawn(move || {
loop {
let instant = Instant::now();
if let Ok(captured_frame) = capturer.get_next_frame() {
let output_frame = pixelutil::frame_to_yuv(captured_frame);
let _ = frame_tx.try_send(output_frame);
let elapsed = instant.elapsed();
let frame_duration = std::time::Duration::from_millis(33); // ~30 FPS
if elapsed < frame_duration {
std::thread::sleep(frame_duration - elapsed);
}
}
}
});
loop {
let yuv_frame_raw = frame_rx.recv()?;
let yuv_frame = pixelutil::apply_frame(&yuv_frame_raw, 1920, 1080);
let pts = 0;
let duration = 1;
let deadline = vpx_rs::EncodingDeadline::Realtime;
let flags = vpx_rs::EncoderFrameFlags::empty();
let packets = encoder.encode(pts, duration, yuv_frame, deadline, flags)?;
for packet in packets {
match packet {
vpx_rs::Packet::CompressedFrame(frame) => {
let is_key = frame.flags.is_key;
let data = frame.data.to_vec();
println!("encoded frame: size={}, is_key={}", data.len(), is_key);
if let Err(e) = tx.blocking_send((data, is_key)) {
eprintln!("Error sending encoded frame: {}", e);
return Err(Box::new(e));
}
}
_ => {}
}
}
}
} }

View File

@@ -1,13 +1,7 @@
use std::time::Instant; use std::time::Instant;
use scap::frame::Frame as ScapFrame; use scap::frame::Frame as ScapFrame;
use vpx_rs::{ use vpx_rs::{ImageFormat, YUVImageData};
ImageFormat, YUVImageData, YUVImageDataOwned,
image::{
UVImagePlanes, UVImagePlanesInterleaved, UVImagePlanesInterleavedMut, UVImagePlanesMut,
},
};
use yuv::{YuvBiPlanarImageMut, YuvPlanarImageMut};
pub fn frame_to_yuv<'a>(captured_frame: ScapFrame) -> Vec<u8> { pub fn frame_to_yuv<'a>(captured_frame: ScapFrame) -> Vec<u8> {
match captured_frame { match captured_frame {
@@ -20,9 +14,9 @@ pub fn frame_to_yuv<'a>(captured_frame: ScapFrame) -> Vec<u8> {
let mut buf = Vec::new(); let mut buf = Vec::new();
//println!("Converting BGRx frame: width={}, height={}", width, height); //println!("Converting BGRx frame: width={}, height={}", width, height);
let start = Instant::now(); let _start = Instant::now();
let r = yuv::bgra_to_yuv420( let _r = yuv::bgra_to_yuv420(
&mut wrap_yuv420_buf(width as usize, height as usize, &mut buf), &mut wrap_yuv420_buf(width as usize, height as usize, &mut buf),
&bgrx_image.data, &bgrx_image.data,
width * 4, width * 4,

View File

@@ -1,7 +0,0 @@
use yuvutils_rs::{YuvBiPlanarImageMut, rgb_to_yuv_nv12, YuvRange, YuvStandardMatrix, YuvConversionMode};
fn main() {
let _ = YuvRange::Limited;
let _ = YuvStandardMatrix::Bt709;
// Let's guess simple names first, compiler will correct me
}