Add Harunai Memory
This commit is contained in:
@@ -26,6 +26,7 @@ import { runInlayScreen } from "./inlayScreen";
|
||||
import { runCharacterJS } from "../plugins/embedscript";
|
||||
import { addRerolls } from "./prereroll";
|
||||
import { runImageEmbedding } from "./transformers";
|
||||
import { hanuraiMemory } from "./memory/hanuraiMemory";
|
||||
|
||||
export interface OpenAIChat{
|
||||
role: 'system'|'user'|'assistant'|'function'
|
||||
@@ -647,22 +648,39 @@ export async function sendChat(chatProcessIndex = -1,arg:{chatAdditonalTokens?:n
|
||||
index++
|
||||
}
|
||||
|
||||
if(nowChatroom.supaMemory && db.supaMemoryType !== 'none'){
|
||||
|
||||
if(nowChatroom.supaMemory && (db.supaMemoryType !== 'none' || db.hanuraiEnable)){
|
||||
chatProcessStage.set(2)
|
||||
const sp = await supaMemory(chats, currentTokens, maxContextTokens, currentChat, nowChatroom, tokenizer, {
|
||||
asHyper: db.hypaMemory
|
||||
})
|
||||
if(sp.error){
|
||||
alertError(sp.error)
|
||||
return false
|
||||
if(db.hanuraiEnable){
|
||||
const hn = await hanuraiMemory(chats, {
|
||||
currentTokens,
|
||||
maxContextTokens,
|
||||
tokenizer
|
||||
})
|
||||
|
||||
if(hn === false){
|
||||
return false
|
||||
}
|
||||
|
||||
chats = hn.chats
|
||||
currentTokens = hn.tokens
|
||||
}
|
||||
else{
|
||||
const sp = await supaMemory(chats, currentTokens, maxContextTokens, currentChat, nowChatroom, tokenizer, {
|
||||
asHyper: db.hypaMemory
|
||||
})
|
||||
if(sp.error){
|
||||
alertError(sp.error)
|
||||
return false
|
||||
}
|
||||
chats = sp.chats
|
||||
currentTokens = sp.currentTokens
|
||||
currentChat.supaMemoryData = sp.memory ?? currentChat.supaMemoryData
|
||||
db.characters[selectedChar].chats[selectedChat].supaMemoryData = currentChat.supaMemoryData
|
||||
console.log(currentChat.supaMemoryData)
|
||||
DataBase.set(db)
|
||||
currentChat.lastMemory = sp.lastId ?? currentChat.lastMemory;
|
||||
}
|
||||
chats = sp.chats
|
||||
currentTokens = sp.currentTokens
|
||||
currentChat.supaMemoryData = sp.memory ?? currentChat.supaMemoryData
|
||||
db.characters[selectedChar].chats[selectedChat].supaMemoryData = currentChat.supaMemoryData
|
||||
console.log(currentChat.supaMemoryData)
|
||||
DataBase.set(db)
|
||||
currentChat.lastMemory = sp.lastId ?? currentChat.lastMemory
|
||||
chatProcessStage.set(1)
|
||||
}
|
||||
else{
|
||||
|
||||
94
src/ts/process/memory/hanuraiMemory.ts
Normal file
94
src/ts/process/memory/hanuraiMemory.ts
Normal file
@@ -0,0 +1,94 @@
|
||||
import { alertError } from "src/ts/alert";
|
||||
import type { OpenAIChat } from "..";
|
||||
import { HypaProcesser } from "./hypamemory";
|
||||
import { language } from "src/lang";
|
||||
import type { ChatTokenizer } from "src/ts/tokenizer";
|
||||
import { get } from "svelte/store";
|
||||
import { DataBase } from "src/ts/storage/database";
|
||||
|
||||
export async function hanuraiMemory(chats:OpenAIChat[],arg:{
|
||||
currentTokens:number,
|
||||
maxContextTokens:number,
|
||||
tokenizer:ChatTokenizer
|
||||
}){
|
||||
const db = get(DataBase)
|
||||
const tokenizer = arg.tokenizer
|
||||
const processer = new HypaProcesser('nomic')
|
||||
let addTexts:string[] = []
|
||||
chats.map((chat) => {
|
||||
if(!chat?.content?.trim()){
|
||||
return
|
||||
}
|
||||
if(db.hanuraiSplit){
|
||||
const splited = chat.content.split('\n\n')
|
||||
for(const split of splited){
|
||||
if(!split.trim()){
|
||||
continue
|
||||
}
|
||||
addTexts.push(`search_document: ${split.trim()}`)
|
||||
}
|
||||
}
|
||||
addTexts.push(`search_document: ${chat.content?.trim()}`)
|
||||
})
|
||||
processer.addText(addTexts)
|
||||
|
||||
let scoredResults:{[key:string]:number} = {}
|
||||
for(let i=1;i<5;i++){
|
||||
const chat = chats[chats.length-i]
|
||||
if(!chat?.content){
|
||||
continue
|
||||
}
|
||||
const scoredArray = (await processer.similaritySearchScored('search_query: ' + chat.content)).map((result) => {
|
||||
return [result[0],result[1]/i] as [string,number]
|
||||
})
|
||||
for(const scored of scoredArray){
|
||||
if(scoredResults[scored[0]]){
|
||||
scoredResults[scored[0]] += scored[1]
|
||||
}else{
|
||||
scoredResults[scored[0]] = scored[1]
|
||||
}
|
||||
}
|
||||
}
|
||||
const vectorResult = Object.entries(scoredResults).sort((a,b)=>a[1]-b[1])
|
||||
|
||||
|
||||
let tokens = arg.currentTokens + db.hanuraiTokens
|
||||
|
||||
while(tokens < arg.maxContextTokens){
|
||||
const poped = chats.pop()
|
||||
if(!poped){
|
||||
alertError(language.errors.toomuchtoken + "\n\nRequired Tokens: " + tokens)
|
||||
return false
|
||||
}
|
||||
tokens -= await tokenizer.tokenizeChat(chats[0])
|
||||
}
|
||||
|
||||
tokens -= db.hanuraiTokens
|
||||
|
||||
let resultTexts:string[] = []
|
||||
for(const vector of vectorResult){
|
||||
const chat = chats.find((chat) => chat.content === vector[0].substring(14))
|
||||
if(chat){
|
||||
continue
|
||||
}
|
||||
const tokenized = await tokenizer.tokenizeChat(chat) + 2
|
||||
tokens += tokenized
|
||||
if(tokens >= arg.maxContextTokens){
|
||||
tokens -= tokenized
|
||||
break
|
||||
}
|
||||
resultTexts.push(vector[0].substring(14))
|
||||
}
|
||||
console.log(resultTexts)
|
||||
chats.unshift({
|
||||
role: "system",
|
||||
memo: "supaMemory",
|
||||
content: resultTexts.join('\n\n'),
|
||||
})
|
||||
return {
|
||||
tokens,
|
||||
chats
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
@@ -92,7 +92,7 @@ export class HypaProcesser{
|
||||
async addText(texts:string[]) {
|
||||
|
||||
for(let i=0;i<texts.length;i++){
|
||||
const itm:memoryVector = await this.forage.getItem(texts[i])
|
||||
const itm:memoryVector = await this.forage.getItem(texts[i] + '|' + this.model)
|
||||
if(itm){
|
||||
itm.alreadySaved = true
|
||||
this.vectors.push(itm)
|
||||
@@ -121,7 +121,7 @@ export class HypaProcesser{
|
||||
for(let i=0;i<memoryVectors.length;i++){
|
||||
const vec = memoryVectors[i]
|
||||
if(!vec.alreadySaved){
|
||||
await this.forage.setItem(texts[i], vec)
|
||||
await this.forage.setItem(texts[i] + '|' + this.model, vec)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,28 +0,0 @@
|
||||
import type { OpenAIChat } from "..";
|
||||
import { HypaProcesser } from "./hypamemory";
|
||||
|
||||
export async function termMemory(chats:OpenAIChat[]){
|
||||
const processer = new HypaProcesser('nomic')
|
||||
processer.addText(chats.map(chat=>chat.content))
|
||||
|
||||
let scoredResults:{[key:string]:number}
|
||||
for(let i=1;i<5;i++){
|
||||
const chat = chats[chats.length-i]
|
||||
if(!chat?.content){
|
||||
continue
|
||||
}
|
||||
const scoredArray = (await processer.similaritySearchScored(chat.content)).map((result) => {
|
||||
return [result[0],result[1]/i] as [string,number]
|
||||
})
|
||||
for(const scored of scoredArray){
|
||||
if(scoredResults[scored[0]]){
|
||||
scoredResults[scored[0]] += scored[1]
|
||||
}else{
|
||||
scoredResults[scored[0]] = scored[1]
|
||||
}
|
||||
}
|
||||
}
|
||||
const result = Object.entries(scoredResults).sort((a,b)=>a[1]-b[1])
|
||||
return result.map(([content,score])=>(content)).join('\n\n')
|
||||
|
||||
}
|
||||
@@ -50,7 +50,8 @@ export const runSummarizer = async (text: string) => {
|
||||
}
|
||||
|
||||
let extractor:FeatureExtractionPipeline = null
|
||||
export const runEmbedding = async (text: string, model:'Xenova/all-MiniLM-L6-v2'|'nomic-ai/nomic-embed-text-v1.5' = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array> => {
|
||||
type EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'|'nomic-ai/nomic-embed-text-v1.5'
|
||||
export const runEmbedding = async (text: string, model:EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array> => {
|
||||
await initTransformers()
|
||||
if(!extractor){
|
||||
extractor = await pipeline('feature-extraction', model);
|
||||
|
||||
Reference in New Issue
Block a user