Add Harunai Memory

This commit is contained in:
kwaroran
2024-04-23 22:07:44 +09:00
parent 376fa1641b
commit 2abd3bf15a
10 changed files with 198 additions and 81 deletions

View File

@@ -26,6 +26,7 @@ import { runInlayScreen } from "./inlayScreen";
import { runCharacterJS } from "../plugins/embedscript";
import { addRerolls } from "./prereroll";
import { runImageEmbedding } from "./transformers";
import { hanuraiMemory } from "./memory/hanuraiMemory";
export interface OpenAIChat{
role: 'system'|'user'|'assistant'|'function'
@@ -647,22 +648,39 @@ export async function sendChat(chatProcessIndex = -1,arg:{chatAdditonalTokens?:n
index++
}
if(nowChatroom.supaMemory && db.supaMemoryType !== 'none'){
if(nowChatroom.supaMemory && (db.supaMemoryType !== 'none' || db.hanuraiEnable)){
chatProcessStage.set(2)
const sp = await supaMemory(chats, currentTokens, maxContextTokens, currentChat, nowChatroom, tokenizer, {
asHyper: db.hypaMemory
})
if(sp.error){
alertError(sp.error)
return false
if(db.hanuraiEnable){
const hn = await hanuraiMemory(chats, {
currentTokens,
maxContextTokens,
tokenizer
})
if(hn === false){
return false
}
chats = hn.chats
currentTokens = hn.tokens
}
else{
const sp = await supaMemory(chats, currentTokens, maxContextTokens, currentChat, nowChatroom, tokenizer, {
asHyper: db.hypaMemory
})
if(sp.error){
alertError(sp.error)
return false
}
chats = sp.chats
currentTokens = sp.currentTokens
currentChat.supaMemoryData = sp.memory ?? currentChat.supaMemoryData
db.characters[selectedChar].chats[selectedChat].supaMemoryData = currentChat.supaMemoryData
console.log(currentChat.supaMemoryData)
DataBase.set(db)
currentChat.lastMemory = sp.lastId ?? currentChat.lastMemory;
}
chats = sp.chats
currentTokens = sp.currentTokens
currentChat.supaMemoryData = sp.memory ?? currentChat.supaMemoryData
db.characters[selectedChar].chats[selectedChat].supaMemoryData = currentChat.supaMemoryData
console.log(currentChat.supaMemoryData)
DataBase.set(db)
currentChat.lastMemory = sp.lastId ?? currentChat.lastMemory
chatProcessStage.set(1)
}
else{

View File

@@ -0,0 +1,94 @@
import { alertError } from "src/ts/alert";
import type { OpenAIChat } from "..";
import { HypaProcesser } from "./hypamemory";
import { language } from "src/lang";
import type { ChatTokenizer } from "src/ts/tokenizer";
import { get } from "svelte/store";
import { DataBase } from "src/ts/storage/database";
export async function hanuraiMemory(chats:OpenAIChat[],arg:{
currentTokens:number,
maxContextTokens:number,
tokenizer:ChatTokenizer
}){
const db = get(DataBase)
const tokenizer = arg.tokenizer
const processer = new HypaProcesser('nomic')
let addTexts:string[] = []
chats.map((chat) => {
if(!chat?.content?.trim()){
return
}
if(db.hanuraiSplit){
const splited = chat.content.split('\n\n')
for(const split of splited){
if(!split.trim()){
continue
}
addTexts.push(`search_document: ${split.trim()}`)
}
}
addTexts.push(`search_document: ${chat.content?.trim()}`)
})
processer.addText(addTexts)
let scoredResults:{[key:string]:number} = {}
for(let i=1;i<5;i++){
const chat = chats[chats.length-i]
if(!chat?.content){
continue
}
const scoredArray = (await processer.similaritySearchScored('search_query: ' + chat.content)).map((result) => {
return [result[0],result[1]/i] as [string,number]
})
for(const scored of scoredArray){
if(scoredResults[scored[0]]){
scoredResults[scored[0]] += scored[1]
}else{
scoredResults[scored[0]] = scored[1]
}
}
}
const vectorResult = Object.entries(scoredResults).sort((a,b)=>a[1]-b[1])
let tokens = arg.currentTokens + db.hanuraiTokens
while(tokens < arg.maxContextTokens){
const poped = chats.pop()
if(!poped){
alertError(language.errors.toomuchtoken + "\n\nRequired Tokens: " + tokens)
return false
}
tokens -= await tokenizer.tokenizeChat(chats[0])
}
tokens -= db.hanuraiTokens
let resultTexts:string[] = []
for(const vector of vectorResult){
const chat = chats.find((chat) => chat.content === vector[0].substring(14))
if(chat){
continue
}
const tokenized = await tokenizer.tokenizeChat(chat) + 2
tokens += tokenized
if(tokens >= arg.maxContextTokens){
tokens -= tokenized
break
}
resultTexts.push(vector[0].substring(14))
}
console.log(resultTexts)
chats.unshift({
role: "system",
memo: "supaMemory",
content: resultTexts.join('\n\n'),
})
return {
tokens,
chats
}
}

View File

@@ -92,7 +92,7 @@ export class HypaProcesser{
async addText(texts:string[]) {
for(let i=0;i<texts.length;i++){
const itm:memoryVector = await this.forage.getItem(texts[i])
const itm:memoryVector = await this.forage.getItem(texts[i] + '|' + this.model)
if(itm){
itm.alreadySaved = true
this.vectors.push(itm)
@@ -121,7 +121,7 @@ export class HypaProcesser{
for(let i=0;i<memoryVectors.length;i++){
const vec = memoryVectors[i]
if(!vec.alreadySaved){
await this.forage.setItem(texts[i], vec)
await this.forage.setItem(texts[i] + '|' + this.model, vec)
}
}

View File

@@ -1,28 +0,0 @@
import type { OpenAIChat } from "..";
import { HypaProcesser } from "./hypamemory";
export async function termMemory(chats:OpenAIChat[]){
const processer = new HypaProcesser('nomic')
processer.addText(chats.map(chat=>chat.content))
let scoredResults:{[key:string]:number}
for(let i=1;i<5;i++){
const chat = chats[chats.length-i]
if(!chat?.content){
continue
}
const scoredArray = (await processer.similaritySearchScored(chat.content)).map((result) => {
return [result[0],result[1]/i] as [string,number]
})
for(const scored of scoredArray){
if(scoredResults[scored[0]]){
scoredResults[scored[0]] += scored[1]
}else{
scoredResults[scored[0]] = scored[1]
}
}
}
const result = Object.entries(scoredResults).sort((a,b)=>a[1]-b[1])
return result.map(([content,score])=>(content)).join('\n\n')
}

View File

@@ -50,7 +50,8 @@ export const runSummarizer = async (text: string) => {
}
let extractor:FeatureExtractionPipeline = null
export const runEmbedding = async (text: string, model:'Xenova/all-MiniLM-L6-v2'|'nomic-ai/nomic-embed-text-v1.5' = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array> => {
type EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'|'nomic-ai/nomic-embed-text-v1.5'
export const runEmbedding = async (text: string, model:EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array> => {
await initTransformers()
if(!extractor){
extractor = await pipeline('feature-extraction', model);