Add nomic embedding
This commit is contained in:
@@ -8,9 +8,9 @@ export class HypaProcesser{
|
||||
oaikey:string
|
||||
vectors:memoryVector[]
|
||||
forage:LocalForage
|
||||
model:'ada'|'MiniLM'
|
||||
model:'ada'|'MiniLM'|'nomic'
|
||||
|
||||
constructor(model:'ada'|'MiniLM'){
|
||||
constructor(model:'ada'|'MiniLM'|'nomic'){
|
||||
this.forage = localforage.createInstance({
|
||||
name: "hypaVector"
|
||||
})
|
||||
@@ -36,11 +36,11 @@ export class HypaProcesser{
|
||||
|
||||
|
||||
async getEmbeds(input:string[]|string) {
|
||||
if(this.model === 'MiniLM'){
|
||||
if(this.model === 'MiniLM' || this.model === 'nomic'){
|
||||
const inputs:string[] = Array.isArray(input) ? input : [input]
|
||||
let results:Float32Array[] = []
|
||||
for(let i=0;i<inputs.length;i++){
|
||||
const res = await runEmbedding(inputs[i])
|
||||
const res = await runEmbedding(inputs[i], this.model === 'nomic' ? 'nomic-ai/nomic-embed-text-v1.5' : 'Xenova/all-MiniLM-L6-v2')
|
||||
results.push(res)
|
||||
}
|
||||
//convert to number[][]
|
||||
|
||||
@@ -2,7 +2,7 @@ import type { OpenAIChat } from "..";
|
||||
import { HypaProcesser } from "./hypamemory";
|
||||
|
||||
export async function termMemory(chats:OpenAIChat[]){
|
||||
const processer = new HypaProcesser('MiniLM')
|
||||
const processer = new HypaProcesser('nomic')
|
||||
processer.addText(chats.map(chat=>chat.content))
|
||||
|
||||
let scoredResults:{[key:string]:number}
|
||||
|
||||
@@ -50,12 +50,12 @@ export const runSummarizer = async (text: string) => {
|
||||
}
|
||||
|
||||
let extractor:FeatureExtractionPipeline = null
|
||||
export const runEmbedding = async (text: string):Promise<Float32Array> => {
|
||||
export const runEmbedding = async (text: string, model:'Xenova/all-MiniLM-L6-v2'|'nomic-ai/nomic-embed-text-v1.5' = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array> => {
|
||||
await initTransformers()
|
||||
if(!extractor){
|
||||
extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||
extractor = await pipeline('feature-extraction', model);
|
||||
}
|
||||
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/all-MiniLM-L6-v2');
|
||||
const tokenizer = await AutoTokenizer.from_pretrained(model);
|
||||
const tokens = tokenizer.encode(text)
|
||||
if (tokens.length > 1024) {
|
||||
let chunks:string[] = []
|
||||
|
||||
Reference in New Issue
Block a user