Add Harunai Memory
This commit is contained in:
@@ -27,7 +27,7 @@
|
||||
"@smithy/protocol-http": "^3.0.12",
|
||||
"@smithy/signature-v4": "^2.0.19",
|
||||
"@tauri-apps/api": "1.5.3",
|
||||
"@xenova/transformers": "^2.14.0",
|
||||
"@xenova/transformers": "^2.17.1",
|
||||
"blueimp-md5": "^2.19.0",
|
||||
"body-parser": "^1.20.2",
|
||||
"buffer": "^6.0.3",
|
||||
|
||||
15
pnpm-lock.yaml
generated
15
pnpm-lock.yaml
generated
@@ -39,8 +39,8 @@ dependencies:
|
||||
specifier: 1.5.3
|
||||
version: 1.5.3
|
||||
'@xenova/transformers':
|
||||
specifier: ^2.14.0
|
||||
version: 2.14.0
|
||||
specifier: ^2.17.1
|
||||
version: 2.17.1
|
||||
blueimp-md5:
|
||||
specifier: ^2.19.0
|
||||
version: 2.19.0
|
||||
@@ -701,11 +701,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@huggingface/jinja@0.1.2:
|
||||
resolution: {integrity: sha512-x5mpbfJt1nKmVep5WNP5VjNsjWApWNj8pPYI+uYMkBWH9bWUJmQmHt2lbf0VCoQd54Oq3XuFEh/UyoVh7rPxmg==}
|
||||
engines: {node: '>=18'}
|
||||
dev: false
|
||||
|
||||
/@huggingface/jinja@0.2.2:
|
||||
resolution: {integrity: sha512-/KPde26khDUIPkTGU82jdtTW9UAuvUTumCAbFs/7giR0SxsvZC4hru51PBvpijH6BVkHcROcvZM/lpy5h1jRRA==}
|
||||
engines: {node: '>=18'}
|
||||
@@ -1704,10 +1699,10 @@ packages:
|
||||
resolution: {integrity: sha512-ggMz8nOygG7d/stpH40WVaNvBwuyYLnrg5Mbyf6bmsj/8+gb6Ei4ZZ9/4PNpcPNTT8th9Q8sM8wYmWGjMWLX/A==}
|
||||
dev: true
|
||||
|
||||
/@xenova/transformers@2.14.0:
|
||||
resolution: {integrity: sha512-rQ3O7SW5EM64b6XFZGx3XQ2cfiroefxUwU9ShfSpEZyhd082GvwNJJKndxgaukse1hZP1JUDoT0DfjDiq4IZiw==}
|
||||
/@xenova/transformers@2.17.1:
|
||||
resolution: {integrity: sha512-zo702tQAFZXhzeD2GCYUNUqeqkoueOdiSbQWa4s0q7ZE4z8WBIwIsMMPGobpgdqjQ2u0Qulo08wuqVEUrBXjkQ==}
|
||||
dependencies:
|
||||
'@huggingface/jinja': 0.1.2
|
||||
'@huggingface/jinja': 0.2.2
|
||||
onnxruntime-web: 1.14.0
|
||||
sharp: 0.32.6
|
||||
optionalDependencies:
|
||||
|
||||
@@ -579,4 +579,5 @@ export const languageEnglish = {
|
||||
tokenizer: "Tokenizer",
|
||||
chatFormating: "Chat Formating",
|
||||
useInstructPrompt: "Use Instruction Prompt",
|
||||
hanuraiMemory: "HanuraiMemory",
|
||||
}
|
||||
@@ -207,32 +207,63 @@
|
||||
</SelectInput>
|
||||
</Arcodion>
|
||||
|
||||
<Arcodion name={language.SuperMemory} styled>
|
||||
<span class="text-textcolor mt-4">{language.SuperMemory} {language.model}</span>
|
||||
<SelectInput className="mt-2 mb-2" bind:value={$DataBase.supaMemoryType}>
|
||||
<Arcodion name={language.SuperMemory}/{language.hanuraiMemory} styled>
|
||||
<span class="text-textcolor mt-4">{language.type}</span>
|
||||
|
||||
<SelectInput value={
|
||||
$DataBase.supaMemoryType !== 'none' ? 'supaMemory' :
|
||||
$DataBase.hanuraiEnable ? 'hanuraiMemory' : 'none'
|
||||
} on:change={(v) => {
|
||||
//@ts-ignore
|
||||
const value = v.target.value
|
||||
if (value === 'supaMemory'){
|
||||
$DataBase.supaMemoryType = 'distilbart'
|
||||
$DataBase.hanuraiEnable = false
|
||||
} else if (value === 'hanuraiMemory'){
|
||||
$DataBase.supaMemoryType = 'none'
|
||||
$DataBase.hanuraiEnable = true
|
||||
} else {
|
||||
$DataBase.supaMemoryType = 'none'
|
||||
$DataBase.hanuraiEnable = false
|
||||
}
|
||||
}}>
|
||||
<OptionInput value="none" >None</OptionInput>
|
||||
<OptionInput value="distilbart" >distilbart-cnn-6-6 (Free/Local)</OptionInput>
|
||||
<OptionInput value="instruct35" >OpenAI 3.5 Turbo Instruct</OptionInput>
|
||||
<OptionInput value="subModel" >{language.submodel}</OptionInput>
|
||||
<OptionInput value="supaMemory" >{language.SuperMemory}</OptionInput>
|
||||
<OptionInput value="hanuraiMemory" >{language.hanuraiMemory}</OptionInput>
|
||||
</SelectInput>
|
||||
<span class="text-textcolor">{language.maxSupaChunkSize}</span>
|
||||
<NumberInput size="sm" marginBottom bind:value={$DataBase.maxSupaChunkSize} min={100} />
|
||||
{#if $DataBase.supaMemoryType === 'davinci' || $DataBase.supaMemoryType === 'curie' || $DataBase.supaMemoryType === 'instruct35'}
|
||||
<span class="text-textcolor">{language.SuperMemory} OpenAI Key</span>
|
||||
<TextInput size="sm" marginBottom bind:value={$DataBase.supaMemoryKey}/>
|
||||
{/if}
|
||||
{#if $DataBase.supaMemoryType !== 'none'}
|
||||
<span class="text-textcolor">{language.SuperMemory} Prompt</span>
|
||||
<TextInput size="sm" marginBottom bind:value={$DataBase.supaMemoryPrompt} placeholder="Leave it blank to use default"/>
|
||||
{/if}
|
||||
{#if $DataBase.hypaMemory}
|
||||
<span class="text-textcolor">{language.HypaMemory} Model</span>
|
||||
<SelectInput className="mt-2 mb-2" bind:value={$DataBase.hypaModel}>
|
||||
<OptionInput value="MiniLM" >MiniLM-L6-v2 (Free / Local)</OptionInput>
|
||||
<OptionInput value="ada" >OpenAI Ada (Davinci / Curie Only)</OptionInput>
|
||||
|
||||
{#if $DataBase.hanuraiEnable}
|
||||
<span>Chunk Size</span>
|
||||
<NumberInput size="sm" marginBottom bind:value={$DataBase.hanuraiTokens} min={100} />
|
||||
<div class="flex">
|
||||
<Check bind:check={$DataBase.hanuraiSplit} name="Text Spliting"/>
|
||||
</div>
|
||||
{:else if $DataBase.supaMemoryType !== 'none'}
|
||||
<span class="text-textcolor mt-4">{language.SuperMemory} {language.model}</span>
|
||||
<SelectInput className="mt-2 mb-2" bind:value={$DataBase.supaMemoryType}>
|
||||
<OptionInput value="distilbart" >distilbart-cnn-6-6 (Free/Local)</OptionInput>
|
||||
<OptionInput value="instruct35" >OpenAI 3.5 Turbo Instruct</OptionInput>
|
||||
<OptionInput value="subModel" >{language.submodel}</OptionInput>
|
||||
</SelectInput>
|
||||
<span class="text-textcolor">{language.maxSupaChunkSize}</span>
|
||||
<NumberInput size="sm" marginBottom bind:value={$DataBase.maxSupaChunkSize} min={100} />
|
||||
{#if $DataBase.supaMemoryType === 'davinci' || $DataBase.supaMemoryType === 'curie' || $DataBase.supaMemoryType === 'instruct35'}
|
||||
<span class="text-textcolor">{language.SuperMemory} OpenAI Key</span>
|
||||
<TextInput size="sm" marginBottom bind:value={$DataBase.supaMemoryKey}/>
|
||||
{/if}
|
||||
{#if $DataBase.supaMemoryType !== 'none'}
|
||||
<span class="text-textcolor">{language.SuperMemory} Prompt</span>
|
||||
<TextInput size="sm" marginBottom bind:value={$DataBase.supaMemoryPrompt} placeholder="Leave it blank to use default"/>
|
||||
{/if}
|
||||
{#if $DataBase.hypaMemory}
|
||||
<span class="text-textcolor">{language.HypaMemory} Model</span>
|
||||
<SelectInput className="mt-2 mb-2" bind:value={$DataBase.hypaModel}>
|
||||
<OptionInput value="MiniLM" >MiniLM-L6-v2 (Free / Local)</OptionInput>
|
||||
<OptionInput value="ada" >OpenAI Ada (Davinci / Curie Only)</OptionInput>
|
||||
</SelectInput>
|
||||
{/if}
|
||||
<div class="flex">
|
||||
<Check bind:check={$DataBase.hypaMemory} name={language.enable + ' ' + language.HypaMemory}/>
|
||||
</div>
|
||||
{/if}
|
||||
<div class="flex">
|
||||
<Check bind:check={$DataBase.hypaMemory} name={language.enable + ' ' + language.HypaMemory}/>
|
||||
</div>
|
||||
</Arcodion>
|
||||
@@ -26,6 +26,7 @@ import { runInlayScreen } from "./inlayScreen";
|
||||
import { runCharacterJS } from "../plugins/embedscript";
|
||||
import { addRerolls } from "./prereroll";
|
||||
import { runImageEmbedding } from "./transformers";
|
||||
import { hanuraiMemory } from "./memory/hanuraiMemory";
|
||||
|
||||
export interface OpenAIChat{
|
||||
role: 'system'|'user'|'assistant'|'function'
|
||||
@@ -647,22 +648,39 @@ export async function sendChat(chatProcessIndex = -1,arg:{chatAdditonalTokens?:n
|
||||
index++
|
||||
}
|
||||
|
||||
if(nowChatroom.supaMemory && db.supaMemoryType !== 'none'){
|
||||
|
||||
if(nowChatroom.supaMemory && (db.supaMemoryType !== 'none' || db.hanuraiEnable)){
|
||||
chatProcessStage.set(2)
|
||||
const sp = await supaMemory(chats, currentTokens, maxContextTokens, currentChat, nowChatroom, tokenizer, {
|
||||
asHyper: db.hypaMemory
|
||||
})
|
||||
if(sp.error){
|
||||
alertError(sp.error)
|
||||
return false
|
||||
if(db.hanuraiEnable){
|
||||
const hn = await hanuraiMemory(chats, {
|
||||
currentTokens,
|
||||
maxContextTokens,
|
||||
tokenizer
|
||||
})
|
||||
|
||||
if(hn === false){
|
||||
return false
|
||||
}
|
||||
|
||||
chats = hn.chats
|
||||
currentTokens = hn.tokens
|
||||
}
|
||||
else{
|
||||
const sp = await supaMemory(chats, currentTokens, maxContextTokens, currentChat, nowChatroom, tokenizer, {
|
||||
asHyper: db.hypaMemory
|
||||
})
|
||||
if(sp.error){
|
||||
alertError(sp.error)
|
||||
return false
|
||||
}
|
||||
chats = sp.chats
|
||||
currentTokens = sp.currentTokens
|
||||
currentChat.supaMemoryData = sp.memory ?? currentChat.supaMemoryData
|
||||
db.characters[selectedChar].chats[selectedChat].supaMemoryData = currentChat.supaMemoryData
|
||||
console.log(currentChat.supaMemoryData)
|
||||
DataBase.set(db)
|
||||
currentChat.lastMemory = sp.lastId ?? currentChat.lastMemory;
|
||||
}
|
||||
chats = sp.chats
|
||||
currentTokens = sp.currentTokens
|
||||
currentChat.supaMemoryData = sp.memory ?? currentChat.supaMemoryData
|
||||
db.characters[selectedChar].chats[selectedChat].supaMemoryData = currentChat.supaMemoryData
|
||||
console.log(currentChat.supaMemoryData)
|
||||
DataBase.set(db)
|
||||
currentChat.lastMemory = sp.lastId ?? currentChat.lastMemory
|
||||
chatProcessStage.set(1)
|
||||
}
|
||||
else{
|
||||
|
||||
94
src/ts/process/memory/hanuraiMemory.ts
Normal file
94
src/ts/process/memory/hanuraiMemory.ts
Normal file
@@ -0,0 +1,94 @@
|
||||
import { alertError } from "src/ts/alert";
|
||||
import type { OpenAIChat } from "..";
|
||||
import { HypaProcesser } from "./hypamemory";
|
||||
import { language } from "src/lang";
|
||||
import type { ChatTokenizer } from "src/ts/tokenizer";
|
||||
import { get } from "svelte/store";
|
||||
import { DataBase } from "src/ts/storage/database";
|
||||
|
||||
export async function hanuraiMemory(chats:OpenAIChat[],arg:{
|
||||
currentTokens:number,
|
||||
maxContextTokens:number,
|
||||
tokenizer:ChatTokenizer
|
||||
}){
|
||||
const db = get(DataBase)
|
||||
const tokenizer = arg.tokenizer
|
||||
const processer = new HypaProcesser('nomic')
|
||||
let addTexts:string[] = []
|
||||
chats.map((chat) => {
|
||||
if(!chat?.content?.trim()){
|
||||
return
|
||||
}
|
||||
if(db.hanuraiSplit){
|
||||
const splited = chat.content.split('\n\n')
|
||||
for(const split of splited){
|
||||
if(!split.trim()){
|
||||
continue
|
||||
}
|
||||
addTexts.push(`search_document: ${split.trim()}`)
|
||||
}
|
||||
}
|
||||
addTexts.push(`search_document: ${chat.content?.trim()}`)
|
||||
})
|
||||
processer.addText(addTexts)
|
||||
|
||||
let scoredResults:{[key:string]:number} = {}
|
||||
for(let i=1;i<5;i++){
|
||||
const chat = chats[chats.length-i]
|
||||
if(!chat?.content){
|
||||
continue
|
||||
}
|
||||
const scoredArray = (await processer.similaritySearchScored('search_query: ' + chat.content)).map((result) => {
|
||||
return [result[0],result[1]/i] as [string,number]
|
||||
})
|
||||
for(const scored of scoredArray){
|
||||
if(scoredResults[scored[0]]){
|
||||
scoredResults[scored[0]] += scored[1]
|
||||
}else{
|
||||
scoredResults[scored[0]] = scored[1]
|
||||
}
|
||||
}
|
||||
}
|
||||
const vectorResult = Object.entries(scoredResults).sort((a,b)=>a[1]-b[1])
|
||||
|
||||
|
||||
let tokens = arg.currentTokens + db.hanuraiTokens
|
||||
|
||||
while(tokens < arg.maxContextTokens){
|
||||
const poped = chats.pop()
|
||||
if(!poped){
|
||||
alertError(language.errors.toomuchtoken + "\n\nRequired Tokens: " + tokens)
|
||||
return false
|
||||
}
|
||||
tokens -= await tokenizer.tokenizeChat(chats[0])
|
||||
}
|
||||
|
||||
tokens -= db.hanuraiTokens
|
||||
|
||||
let resultTexts:string[] = []
|
||||
for(const vector of vectorResult){
|
||||
const chat = chats.find((chat) => chat.content === vector[0].substring(14))
|
||||
if(chat){
|
||||
continue
|
||||
}
|
||||
const tokenized = await tokenizer.tokenizeChat(chat) + 2
|
||||
tokens += tokenized
|
||||
if(tokens >= arg.maxContextTokens){
|
||||
tokens -= tokenized
|
||||
break
|
||||
}
|
||||
resultTexts.push(vector[0].substring(14))
|
||||
}
|
||||
console.log(resultTexts)
|
||||
chats.unshift({
|
||||
role: "system",
|
||||
memo: "supaMemory",
|
||||
content: resultTexts.join('\n\n'),
|
||||
})
|
||||
return {
|
||||
tokens,
|
||||
chats
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
@@ -92,7 +92,7 @@ export class HypaProcesser{
|
||||
async addText(texts:string[]) {
|
||||
|
||||
for(let i=0;i<texts.length;i++){
|
||||
const itm:memoryVector = await this.forage.getItem(texts[i])
|
||||
const itm:memoryVector = await this.forage.getItem(texts[i] + '|' + this.model)
|
||||
if(itm){
|
||||
itm.alreadySaved = true
|
||||
this.vectors.push(itm)
|
||||
@@ -121,7 +121,7 @@ export class HypaProcesser{
|
||||
for(let i=0;i<memoryVectors.length;i++){
|
||||
const vec = memoryVectors[i]
|
||||
if(!vec.alreadySaved){
|
||||
await this.forage.setItem(texts[i], vec)
|
||||
await this.forage.setItem(texts[i] + '|' + this.model, vec)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,28 +0,0 @@
|
||||
import type { OpenAIChat } from "..";
|
||||
import { HypaProcesser } from "./hypamemory";
|
||||
|
||||
export async function termMemory(chats:OpenAIChat[]){
|
||||
const processer = new HypaProcesser('nomic')
|
||||
processer.addText(chats.map(chat=>chat.content))
|
||||
|
||||
let scoredResults:{[key:string]:number}
|
||||
for(let i=1;i<5;i++){
|
||||
const chat = chats[chats.length-i]
|
||||
if(!chat?.content){
|
||||
continue
|
||||
}
|
||||
const scoredArray = (await processer.similaritySearchScored(chat.content)).map((result) => {
|
||||
return [result[0],result[1]/i] as [string,number]
|
||||
})
|
||||
for(const scored of scoredArray){
|
||||
if(scoredResults[scored[0]]){
|
||||
scoredResults[scored[0]] += scored[1]
|
||||
}else{
|
||||
scoredResults[scored[0]] = scored[1]
|
||||
}
|
||||
}
|
||||
}
|
||||
const result = Object.entries(scoredResults).sort((a,b)=>a[1]-b[1])
|
||||
return result.map(([content,score])=>(content)).join('\n\n')
|
||||
|
||||
}
|
||||
@@ -50,7 +50,8 @@ export const runSummarizer = async (text: string) => {
|
||||
}
|
||||
|
||||
let extractor:FeatureExtractionPipeline = null
|
||||
export const runEmbedding = async (text: string, model:'Xenova/all-MiniLM-L6-v2'|'nomic-ai/nomic-embed-text-v1.5' = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array> => {
|
||||
type EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'|'nomic-ai/nomic-embed-text-v1.5'
|
||||
export const runEmbedding = async (text: string, model:EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array> => {
|
||||
await initTransformers()
|
||||
if(!extractor){
|
||||
extractor = await pipeline('feature-extraction', model);
|
||||
|
||||
@@ -394,6 +394,9 @@ export function setDatabase(data:Database){
|
||||
data.instructChatTemplate ??= "chatml"
|
||||
data.openrouterProvider ??= ''
|
||||
data.useInstructPrompt ??= false
|
||||
data.hanuraiEnable ??= false
|
||||
data.hanuraiSplit ??= true
|
||||
data.hanuraiTokens ??= 1000
|
||||
|
||||
changeLanguage(data.language)
|
||||
DataBase.set(data)
|
||||
@@ -642,6 +645,9 @@ export interface Database{
|
||||
JinjaTemplate:string
|
||||
openrouterProvider:string
|
||||
useInstructPrompt:boolean
|
||||
hanuraiTokens:number
|
||||
hanuraiSplit:boolean
|
||||
hanuraiEnable:boolean
|
||||
}
|
||||
|
||||
export interface customscript{
|
||||
@@ -847,7 +853,6 @@ export interface botPreset{
|
||||
top_a?:number
|
||||
openrouterProvider?:string
|
||||
useInstructPrompt?:boolean
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user