Refactor runEmbedding function in transformers.ts

This commit is contained in:
kwaroran
2024-04-24 20:14:48 +09:00
parent 97d672d270
commit 2eb27a2dde

View File

@@ -57,39 +57,6 @@ export const runEmbedding = async (text: string, model:EmbeddingModel = 'Xenova/
extractor = await pipeline('feature-extraction', model);
}
const tokenizer = await AutoTokenizer.from_pretrained(model);
const tokens = tokenizer.encode(text)
if (tokens.length > 1024) {
let chunks:string[] = []
let chunk:number[] = []
for (let i = 0; i < tokens.length; i++) {
if (chunk.length > 256) {
chunks.push(tokenizer.decode(chunk))
chunk = []
}
chunk.push(tokens[i])
}
chunks.push(tokenizer.decode(chunk))
let results:Float32Array[] = []
for (let i = 0; i < chunks.length; i++) {
let result = await extractor(chunks[i], { pooling: 'mean', normalize: true });
const res:Float32Array = result?.data as Float32Array
if(res){
results.push(res)
}
}
//set result, as average of all chunks
let result:Float32Array = new Float32Array(results[0].length)
for (let i = 0; i < results.length; i++) {
for (let j = 0; j < result.length; j++) {
result[j] += results[i][j]
}
}
for (let i = 0; i < result.length; i++) {
result[i] = Math.round(result[i] / results.length)
}
return result
}
let result = await extractor(text, { pooling: 'mean', normalize: true });
return (result?.data as Float32Array) ?? null;
}