[feat] better supaMemory

This commit is contained in:
kwaroran
2023-05-20 03:25:55 +09:00
parent 5f359bb036
commit 6035d1e01d

View File

@@ -66,33 +66,11 @@ export async function supaMemory(chats:OpenAIChat[],currentTokens:number,maxCont
let lastId = ''
while(currentTokens > maxContextTokens){
const maxChunkSize = maxContextTokens > 3000 ? 1200 : Math.floor(maxContextTokens / 2.5)
let chunkSize = 0
let stringlizedChat = ''
while(true){
const cont = chats[0]
if(!cont){
return {
currentTokens: currentTokens,
chats: chats,
error: "Not Enough Chunks"
}
}
const tokens = await tokenize(cont.content) + 1
if((chunkSize + tokens) > maxChunkSize){
lastId = cont.memo
break
}
stringlizedChat += `${cont.role === 'assistant' ? char.type === 'group' ? '' : char.name : db.username}: ${cont.content}\n\n`
chats.splice(0, 1)
currentTokens -= tokens
chunkSize += tokens
}
async function summarize(stringlizedChat:string){
const supaPrompt = db.supaMemoryPrompt === '' ?
"[Summarize the ongoing role story. It must also remove redundancy and unnecessary content from the prompt so that gpt3 and other sublanguage models]\n"
"[Summarize the ongoing role story, including as many events from the past as possible, using assistant as a narrative helper;do not analyze. include all of the characters' names, statuses, thoughts, relationships, and attire. Be sure to include dialogue exchanges and context by referencing previous statements and reactions. assistant's summary should provide an objective overview of the story while also considering relevant past conversations and events. It must also remove redundancy and unnecessary content from the prompt so that gpt3 and other sublanguage models]\n"
: db.supaMemoryPrompt
let result = ''
@@ -147,12 +125,74 @@ export async function supaMemory(chats:OpenAIChat[],currentTokens:number,maxCont
}
result = da.result
}
return result
}
if(supaMemory.split('\n\n').length >= 4){
const result = await summarize(supaMemory)
if(typeof(result) !== 'string'){
return result
}
currentTokens -= await tokenize(supaMemory)
currentTokens += await tokenize(result + '\n\n')
supaMemory = result + '\n\n'
}
while(currentTokens > maxContextTokens){
let maxChunkSize = maxContextTokens > 3500 ? 1200 : Math.floor(maxContextTokens / 3)
while((currentTokens - (maxChunkSize * 0.7)) > maxContextTokens){
maxChunkSize = Math.floor(maxChunkSize * 0.7)
if(maxChunkSize < 500){
return {
currentTokens: currentTokens,
chats: chats,
error: "Not Enough Tokens"
}
}
}
let chunkSize = 0
let stringlizedChat = ''
while(true){
const cont = chats[0]
if(!cont){
return {
currentTokens: currentTokens,
chats: chats,
error: "Not Enough Tokens"
}
}
const tokens = await tokenize(cont.content) + 1
if((chunkSize + tokens) > maxChunkSize){
lastId = cont.memo
break
}
stringlizedChat += `${cont.role === 'assistant' ? char.type === 'group' ? '' : char.name : db.username}: ${cont.content}\n\n`
chats.splice(0, 1)
currentTokens -= tokens
chunkSize += tokens
}
const result = await summarize(stringlizedChat)
if(typeof(result) !== 'string'){
return result
}
const tokenz = await tokenize(result + '\n\n') + 5
currentTokens += tokenz
supaMemory += result + '\n\n'
supaMemory += result.replace(/\n+/g,'\n') + '\n\n'
if(supaMemory.split('\n\n').length >= 4){
const result = await summarize(supaMemory)
if(typeof(result) !== 'string'){
return result
}
currentTokens -= await tokenize(supaMemory)
currentTokens += await tokenize(result + '\n\n')
supaMemory = result + '\n\n'
}
}
chats.unshift({
@@ -171,4 +211,5 @@ export async function supaMemory(chats:OpenAIChat[],currentTokens:number,maxCont
currentTokens: currentTokens,
chats: chats
}
}
}