Fix hypav2 issue where the 'search_document: ' string is not truncated correctly. (#675)

# PR Checklist
- [x] Did you check if it works normally in all models? *ignore this
when it dosen't uses models*
- [x] Did you check if it works normally in all of web, local and node
hosted versions? if it dosen't, did you blocked it in those versions?
- [ ] Did you added a type def?

# Description
This PR fixes hypav2 issue where the "search_document: " string is not
truncated correctly.
If the "search_document: " string is not truncated correctly, it will
cause "t: " to remain within the <Past Events Details></Past Events
Details> tag.

Edit: This PR also add memo "supaPrompt" to detect supaMemory model
requests in the plugin
This commit is contained in:
kwaroran
2024-12-05 22:52:21 +09:00
committed by GitHub

View File

@@ -87,7 +87,7 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
let parsedPrompt = parseChatML(supaPrompt.replaceAll('{{slot}}', stringlizedChat))
const promptbody: OpenAIChat[] = parsedPrompt ?? [
const promptbody: OpenAIChat[] = (parsedPrompt ?? [
{
role: "user",
content: stringlizedChat
@@ -96,7 +96,10 @@ async function summary(stringlizedChat: string): Promise<{ success: boolean; dat
role: "system",
content: supaPrompt
}
];
]).map(message => ({
...message,
memo: "supaPrompt"
}));
console.log("Using submodel: ", db.subModel, "for supaMemory model");
const da = await requestChatData({
formated: promptbody,
@@ -230,6 +233,7 @@ export async function hypaMemoryV2(
}
// Fetch additional memory from chunks
const searchDocumentPrefix = "search_document: ";
const processor = new HypaProcesser(db.hypaModel);
processor.oaikey = db.supaMemoryKey;
@@ -249,7 +253,7 @@ export async function hypaMemoryV2(
console.log("Older Chunks:", olderChunks);
// Add older chunks to processor for similarity search
await processor.addText(olderChunks.filter(v => v.text.trim().length > 0).map(v => "search_document: " + v.text.trim()));
await processor.addText(olderChunks.filter(v => v.text.trim().length > 0).map(v => searchDocumentPrefix + v.text.trim()));
let scoredResults: { [key: string]: number } = {};
for (let i = 0; i < 3; i++) {
@@ -267,9 +271,10 @@ export async function hypaMemoryV2(
let chunkResultTokens = 0;
while (allocatedTokens - mainPromptTokens - chunkResultTokens > 0 && scoredArray.length > 0) {
const [text] = scoredArray.shift();
const tokenized = await tokenizer.tokenizeChat({ role: 'system', content: text.substring(14) });
const tokenized = await tokenizer.tokenizeChat({ role: 'system', content: text.substring(searchDocumentPrefix.length) });
if (tokenized > allocatedTokens - mainPromptTokens - chunkResultTokens) break;
chunkResultPrompts += text.substring(14) + '\n\n';
// Ensure strings are truncated correctly using searchDocumentPrefix.length
chunkResultPrompts += text.substring(searchDocumentPrefix.length) + '\n\n';
chunkResultTokens += tokenized;
}