Remove unessesary convertions

This commit is contained in:
kwaroran
2024-04-24 20:29:10 +09:00
parent 2eb27a2dde
commit acf72727b6
2 changed files with 17 additions and 26 deletions

View File

@@ -17,10 +17,10 @@ export class HypaProcesser{
this.model = model
}
async embedDocuments(texts: string[]): Promise<number[][]> {
async embedDocuments(texts: string[]): Promise<VectorArray[]> {
const subPrompts = chunkArray(texts,512);
const embeddings: number[][] = [];
const embeddings: VectorArray[] = [];
for (let i = 0; i < subPrompts.length; i += 1) {
const input = subPrompts[i];
@@ -37,22 +37,8 @@ export class HypaProcesser{
async getEmbeds(input:string[]|string) {
if(this.model === 'MiniLM' || this.model === 'nomic'){
const inputs:string[] = Array.isArray(input) ? input : [input]
let results:Float32Array[] = []
for(let i=0;i<inputs.length;i++){
const res = await runEmbedding(inputs[i], this.model === 'nomic' ? 'nomic-ai/nomic-embed-text-v1.5' : 'Xenova/all-MiniLM-L6-v2')
results.push(res)
}
//convert to number[][]
const result:number[][] = []
for(let i=0;i<results.length;i++){
const res = results[i]
const arr:number[] = []
for(let j=0;j<res.length;j++){
arr.push(res[j])
}
result.push(arr)
}
return result
let results:Float32Array[] = await runEmbedding(inputs, this.model === 'nomic' ? 'nomic-ai/nomic-embed-text-v1.5' : 'Xenova/all-MiniLM-L6-v2')
return results
}
const gf = await globalFetch("https://api.openai.com/v1/embeddings", {
headers: {
@@ -138,7 +124,7 @@ export class HypaProcesser{
}
private async similaritySearchVectorWithScore(
query: number[],
query: VectorArray,
): Promise<[string, number][]> {
const memoryVectors = this.vectors
const searches = memoryVectors
@@ -160,12 +146,18 @@ export class HypaProcesser{
return similarity(query1, query2)
}
}
function similarity(a:number[], b:number[]) {
return a.reduce((acc, val, i) => acc + val * b[i], 0);
function similarity(a:VectorArray, b:VectorArray) {
let dot = 0;
for(let i=0;i<a.length;i++){
dot += a[i] * b[i]
}
return dot
}
type VectorArray = number[]|Float32Array
type memoryVector = {
embedding:number[]
embedding:number[]|Float32Array,
content:string,
alreadySaved?:boolean
}

View File

@@ -51,14 +51,13 @@ export const runSummarizer = async (text: string) => {
let extractor:FeatureExtractionPipeline = null
type EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'|'nomic-ai/nomic-embed-text-v1.5'
export const runEmbedding = async (text: string, model:EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array> => {
export const runEmbedding = async (texts: string[], model:EmbeddingModel = 'Xenova/all-MiniLM-L6-v2'):Promise<Float32Array[]> => {
await initTransformers()
if(!extractor){
extractor = await pipeline('feature-extraction', model);
}
const tokenizer = await AutoTokenizer.from_pretrained(model);
let result = await extractor(text, { pooling: 'mean', normalize: true });
return (result?.data as Float32Array) ?? null;
let result = await extractor(texts, { pooling: 'mean', normalize: true });
return (result.data as Float32Array[]) ?? null;
}
export const runImageEmbedding = async (dataurl:string) => {